

National Information
Platforms for Nutrition

Guidelines & toolkits

Toolkit for assessing the quality of anthropometry data
Draft Version – December 2017

Mark Myatt

ABOUT THE NIPN INITIATIVE

National Information Platforms for Nutrition (NIPN) is an initiative of the European Commission

supported by the United Kingdom Department for International Development and the Bill & Melinda

Gates Foundation. The initiative aims to strengthen national capacity to manage and analyse

information and data from all sectors which have an influence on nutrition and to disseminate and

use information so as to better inform the strategic decisions countries are faced with to prevent

undernutrition and its consequences. A Global Support Facility has been set up by the European

Commission to coordinate the NIPN initiative, managed by the Agrinatura alliance and hosted by

Agropolis International.

DISCLAIMER

This publication has been commissioned by the Global Support Facility for the National Information

Platforms for Nutrition initiative. The findings, interpretations, conclusions, advice and

recommendations expressed in this work are those of the authors and do not necessarily reflect the

views of the organizations that host, manage or fund the Global Support Facility.

AUTHOR

Mark Myatt, Brixton Health, Consultant Epidemiologist

COPYRIGHT STATEMENT

Copyright © 2017 by the Global Support Facility for the National Information Platforms for Nutrition

initiative. Agropolis International, 1000 avenue Agropolis, 34394 Montpellier cedex 5, France.

Cover page illustration: © Serhiy Smirnov / Schutterstock

This report may be freely reproduced, in whole or in part, provided the original source is properly

cited and acknowledged.

RECOMMENDED CITATION

Myatt, M. Toolkit for assessing the quality of anthropometry data. Montpellier, France: Agropolis

International, Global Support Facility for the National Information Platforms for Nutrition initiative.

2017.

PUBLICATION DATE

December 2017

The full report can be downloaded here:

http://www.nipn-nutrition-platforms.org/IMG/pdf/nipn-data-quality-toolkit.pdf

http://www.nipn-nutrition-platforms.org/IMG/pdf/nipn-data-quality-toolkit.pdf

Contents

1. Introduction p. 1

2. The NIPN data quality toolkit p. 3

3. Checking ranges and legal values p. 11

4. Sex ratio p. 18

5. Age and sex distributions p. 23

6. Digit preference in anthropometric measurements p. 41

7. Age heaping p. 54

8. Using scatter plots to identify outliers p. 62

9. Identifying outliers using flags p. 77

10. Assessing the distribution of anthropometric variables, indices and

indicators

p. 92

11. Mean, standard deviation, prevalence and the PROBIT estimator p. 116

12. Assessing data quality p. 123

Appendix: Z scores p. 125

1

1. Introduction

This document presents a set of practical analytical methods that can be applied to variables in
datasets to assess their quality. Criteria to judge data quality are also presented. An additional
function to calculate z-scores of anthropometric indices is described in an Appendix.

The focus of this toolkit is on data required to assess the anthropometric status of humans, such as
measurements of weight, height or length, mid upper-arm circumference (MUAC), sex and age. Many
of the methods could be applied to other types of data.

Data quality is assessed by:

Checking ranges and legal value to identify univariate outliers (Section 3: Checking ranges and
legal values).

Assessing the sex ratio (Section 4: Sex ratio).

Assessing age distributions and age by sex distributions (Section 5: Age and sex distributions).

Assessing the extent of digit preference in recorded measurements (Section 6: Digit preference
in anthropometric measurements).

Assessing the extent of age heaping in recorded ages (Section 7: Age heaping).

Using scatterplots and statistical methods to identify bivariate outliers (Section 8: Using
scatterplots to identify outliers).

Using flags to identify outliers in anthropometric indices (Section 9: Identifying outliers using
flags).

Examining the distribution and the statistics of the distribution of measurements and
anthropometric indices (Section 10: Assessing the distribution of anthropometric variable,
indices and indicators).

These activities and a proposed order in which they should be performed are shown in Figure 1.1.

An additional section provides material relating the mean and standard deviations of indicator values,
prevalence, and the PROBIT estimator (Section 11: Mean, standard deviation, prevalence, and the
PROBIT estimator).

The quality of data can then be assessed (Section 12: Assessing data quality).

The material is intended to provide a practical or “hands on” introduction to assessing data quality and
is presented as a series of computer-based exercises. Example datasets are provided.

Extensive use is made of the R language and environment for statistical computing. This is a free and
powerful data analysis system. Methods have been described in sufficient detail to allow activities to
be performed using other data analysis systems.

R provides a very extensive language for working with data. The material presented here has been
written using only a small subset of the R language. Many of the data quality activities are supported
by R functions that have been written specifically for this purpose. These simplify the assessment of
the quality of data related to anthropometry and anthropometric indices. The basic R functions, the
purpose-written functions, and the filenames of example datasets are also shown in Figure IN01.

2

Figure 1.1 Data quality flow chart, associated R functions, and example datasets

Functions given in bold are purpose-written functions provided by the NiPN data quality toolkit

3

2. The NIPN data quality toolkit

The material in this guide uses some purpose-written functions in the R language. R is free software
for statistical computing. It can be downloaded and installed from here:

 https://www.r-project.org/

The functions for use in the NIPN data quality toolkit are provided in a file named nipnTK.r. You can
load this set of functions into R using the source() function. You should do this each time you start R.

For example, if you place the nipnTK.r file in the directory:

~/Documents/Clients/NIPN/toolkit/

you would use:

source("~/Documents/Clients/NIPN/toolkit/nipnTK.r")

to load the file into R.

That is a UNIX path. If you are using Microsoft WindowsTM and have placed the file nipnTK.r in the
directory:

c:\dataquality

then you would use:

source("c:/dataquality/nipnTK.r")

to load the file into R.

Note that R uses the forward slash (/) rather than the backslash (\) as separators in pathnames. This
is because R uses the backslash character as an “escape” character (i.e. a special character that alters
the meaning of the subsequent character).

Be careful if you copy and paste the R commands from this document and then edit them to create new
commands. It is best to do this in the user interface that you use with R, or in a plain text editor such
as WordPad or Notepad++ on Windows; EMACS, VIM, or Scintilla on Linux; BBEdit on MacOS; or the
editor provided by your preferred R environment (e.g. RStudio). This is because word processors such
as Microsoft Word® tend to use “smart” asymmetrical quotes like this “text” rather than plain,
symmetrical quotes such as this "text". R does not recognise the asymmetrical quotes and will give
an error message if they are used.

A set of example data files is also provided with this toolkit. It is easiest to set the working directory to
the directory where these files are stored once you start R. You can do this using the R graphical user
interface when you start R or by using the setwd() function.

A quick way of opening file in R without having to type a long pathname is to use the file.choose()
function as in:

 source(file.choose())

to load a collection of R functions or an R script.

https://www.r-project.org/

4

A similar technique may be used for reading data files. For example:

 svy <- read.table(file.choose(), header = TRUE, sep = ",")

will allow you to select and read a comma separated value (CSV) file and store it in a data.frame
object named svy. You will do this each time you load a new data set.

Example datasets to accompany each exercise has been provided in CSV format files.

The CSV format has been used because it is easy to use with different data analysis systems. Most
users of R tend to use data in simple text-based formats such as CSV files.

R can read and write data in a number of different formats, which are shown in Table 2.1. Libraries
and functions for parsing XML data and for extracting data from websites and PDF files are also
available.

Table 2.1 The format of files that R can read and write, with the additional package required if
needed.

 R can …

Format Read Write Functions Package*

All text based formats** ● ● read.table()

write.table()

read.fwf()

read.fortran()

None
required

Weka ARFF ● ● read.arff()

write.arff()

foreign***

dBase (DBF) ● ● read.dbf()

write.dbf()
STATA ● ● read.dta()

write.dta()
EpiInfo / EpiData (REC) ● ○ read.epiinfo()

SPSS ● ○ read.spss()

Systat ● ○ read.systat()

SAS ● ○ read.ssd()

read.xport()

lookup.export()
ODBC data sources ● ●

Many. SQL queries
supported.

RODBC

Excel (XLS, XLSX)

● ●

● ○ read.xls() gdata

● ● Many XLConnect

● ● read.xlsx()

write.xlsx()

xlsx

* Packages provide additional functions, example datasets, and associated help pages. A wide variety of packages
are available from https://cran.r-project.org

** This includes comma separated value (CSV) files. The field separator character may be specified to enable
datasets to be read that use a comma as the decimal separator (e.g. 12,3 to represent 12.3) and are delimited
with tabs or semi-colons. The read.fwf() and read.fortran() functions are used to read files in fixed width
formats. These formats are commonly used in census and large-survey data.

*** The foreign library is installed by default and will not need to be downloaded.

https://cran.r-project.org/

5

2.1 Using R

R is a language product. Almost everything you will do in R will require you to issue commands at the
keyboard or apply commands stored in a text file. You can cut and paste the commands from this
toolkit directly into the interface and then press the Enter key to run them.

The default graphical user interface (GUI) for R is quite basic. The R Core Team concentrate on the
development and maintenance of the R language and provide only a very simple GUI. Separate teams
are responsible for developing graphical user interfaces.

A number of alternative graphical user interfaces for R are available.

Both RStudio:

 https://www.rstudio.com

and R-AnalyticFlow:

 http://r.analyticflow.com/en/

provide sophisticated, open-source and free graphical user interfaces for R.

RStudio provides an interface similar to an integrated development environment (IDE) for a
programming language.

R-AnalyticFlow provides a scientific workflow system with graphical user interface components for
common data management and data analysis activities.

R is a widely used and well-supported system. A large number of books and manuals are available in
paper and digital formats. The R project provides books and manuals, a number of mailing lists with
searchable archives that provide general and specialist support, and a refereed journal. See:

 https://cran.r-project.org

There are also a number of independent online forums and blogs providing support to R users. These
are easily accessed from an Internet search engine. Preceding each search term with R is usually
sufficient to find what you want. For example, a search using R test for normality will return
many useful links.

Courses in using R are available in many countries: try searching for R training.

The R help system is very comprehensive. To find help on a specific function type ? followed by the
name of the function you are interested in. For example, typing:

 ?read.table

will display help for the read.table() function.

To find help of a specific topic type ?? followed by the topic of interest. For example, typing:

 ??normality

will display a list of functions relating to the term “normality”.

https://www.rstudio.com/
http://r.analyticflow.com/en/
https://cran.r-project.org/

6

2.2 Functions provided by the NIPN data quality toolkit

The remainder of this section provides details of the functions provided by the NIPN data quality
toolkit.

Functions whose names start with plot. and print. are used whenever plot() and print()
functions are used with objects returned by specified functions. For example, the function
plot.digitPreference() causes plot() to produce a plot of final digit frequencies from objects
returned by the digitPreference() function. These functions are used automatically as and when
needed. The functions are presented in alphabetical order in Table 2.2

Table 2.2 A list of the functions available in the NIPN data quality toolkit, in alphabetical order.

Function ageChildren()

Purpose Goodness of fit to an expected (model-based) age distribution

Parameters
age Vector of child ages
u5mr Under five years mortality rate as deaths / 10,000 / day (default = 1)

Returns

u5mr Specified mortality rate
observed Table of counts in each (year-centred) age group
Expected Table of expected counts in each (year-centred) age group
X2 Chi-squared test statistic
df Degrees of freedom for Chi-squared test statistic
p p-value for Chi-squared test statistic

Notes
Creates year centred age-groups (i.e. 6:17, 18:29, 30:41, 42:53, and 54:59 months).
This function is of most use with data from SMART (and similar) surveys.

Function ageHeaping()

Purpose Age-heaping analysis

Parameters
X Vector of child ages
divisor Divisor usually 5, 6, 10, or 12 (default = 12)

Returns

X2 Chi-squared test statistic
df Degrees of freedom for Chi-squared test statistic
p p-value for Chi-squared test statistic
tab Table of remainders (i.e. for x / divisor)
pct Table of proportions (%) of remainders (for x / divisor)

Function ageRatioTest()

Purpose Age ratio test

Parameters
x Vector of child ages
ratio Expected age ratio (default = 0.85)

Returns

expectedR Expected sex ratio
expectedP Expected proportion aged 6:29 months
observedR Observed sex ratio
observedP Observed proportion aged 6:29 months
X2 Chi-squared test statistic
df Degrees of freedom for Chi-squared test statistic
p p-value for Chi-squared test statistic

Notes
Uses 6:29 and 30:59 month age-groups. This function is of most use for data from
SMART (and similar) surveys.

Function boxText()

Purpose Plot text in a coloured bounding box to a graphics device
Parameters See function definition in nipnTK.r

Returns See function definition in nipnTK.r

Notes This is a helper function used by ageHeaping() and digitPreference()

7

Table 2.2 contd. A list of the functions available in the NIPN data quality toolkit, in alphabetical order.

Function digitPreference()

Purpose Digit preference score

Parameters

x Numeric vector
digits Number of decimal (digits = 1 (e.g.) treats 105 as 105.0
values A vector of possible values for the final digit (default = 0:9)

Returns

dps Digit Preference Score (DPS)
tab Table of final digit counts
pct Table of proportions (%) of final digit counts
dpsClass SMART DPS classification

Notes

DPS definition from:

Kari Kuulasmaa K, Hense HW, Tolonen H (for the WHO MONICA Project),
Quality Assessment of Data on Blood Pressure in the WHO MONICA Project,
WHO MONICAProject e-publications No. 9, WHO, Geneva, May 1998

Available from :

http://www.thl.fi/publications/monica/bp/bpqa.htm

Function fullTable()

Purpose Fill out a one-dimensional table to include a specified range of values

Parameters
x A vector to tabulate
values A vector of values to be included in a table defaults to range of x)

Returns A table object including zero cells

Notes

This is a helper function used by ageChildren(), ageHeaping(), and
digitPreference(). May also be used as a standalone function. The returned table
object will only contain cells for values of x specified by values. The default for
values will only work reliably with numeric variable containing whole numbers.

Function greensIndex()

Purpose Green’s Index of Dispersion by bootstrap

Parameters

data Survey dataset (as an R data.frame)
psu Name of variable holding PSU (cluster) data as a character
case Name of variable holding case status (case = 1)
replicates Number of bootstrap replicates to use (default is 999)

Returns

GI Point estimate of Green's Index of dispersion
LCL 95% LCL for Green's Index of dispersion
UCL 95% UCL for Green's Index of dispersion
minGI Minimum possible GI (maximum uniformity) for the data
p p-value (H0 := Random distribution of cases across PSUs)

Function histNormal()

Purpose Histogram with normal curve superimposed
Parameters x Numeric vector
Returns NULL The null (empty) object
Notes Additional names parameters xlab, ylab. main, breaks, and ylim are passed to

hist() with sensible default values if none are specified.

Function national.SMART()

Purpose Add SMART flags to a stratified sample survey (e.g. MICS, DHS, national SMART)

Parameters

x Survey dataset (as an R data.frame object) with indices present
strata Name of column in x that defines the strata
indices Names of columns in x containing indices

Returns
An R data.frame object with same structure as x with a flagSMART column added.
This column is coded using sums of powers of two.

http://www.thl.fi/publications/monica/bp/bpqa.htm

8

Table 2.2 contd. A list of the functions available in the NIPN data quality toolkit, in alphabetical order.

Function outliersMD()

Purpose Mahalanobis distance to detect bivariate outliers

Parameters

x Numeric vector
y Numeric vector
alpha Critical alpha value to detect an outlier (default = 0.001)

Returns A logical vector (TRUE for an outlier at p < alpha)

Function outliersUV()

Purpose IQR to detect univariate outliers

Parameters
x Numeric vector
Fence IQR multiplier (default = 1.5)

Returns A logical vector (TRUE for an outlier)

Function plot.ageChildren()

Purpose Provides plot() method for object with class ageChildren

Function plot.ageHeaping()

Purpose Provides plot() method for object with class ageHeaping

Function plot.digitPreference()

Purpose Provides plot() method for object with class digitPreference

Function print.ageChildren()

Purpose Provides print() method for object with class ageChildren

Function print.ageHeaping()

Purpose Provides print() method for object with class ageHeaping

Function print.ageRatioTest()

Purpose Provides print() method for object with class ageRatioTest

Function print.digitPreference()

Purpose Provides print() method for object with class digitPreference

Function print.greensIndex()

Purpose Provides print() method for object with class greensIndex

Function print.sexRatioTest()

Purpose Provides print() method for object with class sexRatioTest

Function print.skewKurt()

Purpose Provides print() method for object with class skewKurt

Function pyramid.plot()

Purpose Age-by-sex pyramid plot

Parameters

x Vector of ages (usually grouped)
g Vector of groups (usually sex)
main Plot title
xlab x-axis label
ylab y-axis label (usually omitted)
col Colours for bars. Either a single colour (default is col = "white")

for all bars, two colours (e.g. col = c(“lightblue”, "pink") for
left hand side bars and right hand side bars respectively, or many
colours allocated on a “checkerboard” basis to each bar.

 ... Additional parameters (e.g. cex.names) passed to barplot()

Returns A table of x by g (not displayed)

Notes Useful defaults are provided for the main, xlab, ylab, and col parameters

9

Table 2.2 contd. A list of the functions available in the NIPN data quality toolkit, in alphabetical order.

Function qqNormalPlot()

Purpose Normal quantile-quantile plot
Parameters x A numeric vector

Function recode()

Purpose A recode function

Parameters

var Variable to recode
recodes Recode specifications in a character string separated by semicolons

of the form input=output as in:

"1=1;2=1;3:6=2;else=NA"

If an input value satisfies more than one specification, then the first
(reading from left to right) is applied. If no specification is satisfied,
then the input value in var is carried over to the result unchanged

NA is allowed on both input and output.

The following recode specifications are supported:

Specification Example Notes
Single values 9=NA

Set of values

c(1,2,5)=1

seq(1,9,2)='odd'

1:10=1

The left-hand-side is
any R function call
that returns a vector

Range of values
7:9=3

lo:115=1

Special values lo
and hi (for lowest
and highest values)
may be used

Other values else=NA

Character values are quoted as in:

recodes =
 "c(1,2,5)='sanitary';else='unsanitary'"

 The output may be the (scalar) result of a function call as in:

recodes = "999=median(var, na.rm = TRUE)"

The ouput may be the (scalar) value of a variable as in:

recodes = "999=scalarVariable"

If all of the output values are numeric, and if afr is FALSE, then a
numeric result is returned; if var is a factor then (by default) so is
the result.

afr Return a factor. Default is TRUE if var is a factor and is FALSE
otherwise.

anr Coerce result to numeric (default = TRUE).
levels Order of the levels in the returned factor. The default is to use the

sort order of the level names.
Returns Recoded variable

Notes
Users are strongly advised to carefully check the results of recode() calls with any
outputs that are the results of a function call.

10

Table 2.2 contd. A list of the functions available in the NIPN data quality toolkit, in alphabetical order.

Function sexRatioTest()

Purpose Sex ratio test

Parameters

sex Numeric vector (sex)
codes Codes used to identify males and females (in that order)
pop Relative populations of males and females (in that order)

Returns

pM Observed proportion male
eM Expected proportion male
X2 Chi-squared test statistic
df Degrees of freedom for Chi-squared test
p p-value for for Chi-squared test

Function skewKurt()

Purpose Skewness and kurtosis statistics and tests
Parameters x Numeric vector

Returns

s Skewness with direction
s.se Standard error of skewness
s.z Test statistic
s.p p-value for skewness
k Kurtosis with direction
k.se Standard error of kurtosis
k.z Test statistic
k.p p-value for kurtosis

11

3. Checking ranges and legal values

Checking that data are within an acceptable or plausible range is an important basic test to apply to
quantitative data. Checking that data are recorded with appropriate legal values or codes is an
important basic check to apply to categorical data.

3.1 Checking quantitative data

We will retrieve a survey dataset:

svy <- read.table("rl.ex01.csv", header = TRUE, sep = ",")

head(svy)

The file rl.ex01.csv is a comma-separated-value (CSV) file containing anthropometry data from a
SMART survey in Angola.

We can use the summary() function to examine the range and other summary statistics of a
quantitative variable:

summary(svy$muac)

This returns:

Min. 1st Qu. Median Mean 3rd Qu. Max.
11.1 128.0 139.0 140.3 148.0 999.0

A graphical examination can also be made:

boxplot(svy$muac, horizontal = TRUE, xlab = "MUAC (mm)", frame.plot = FALSE)

See Figure 3.1. The “whiskers” on the boxplot extend to 1.5 times the interquartile range from the ends
of the box (i.e. the lower and upper quartiles). This is known as the inner fence. Data points that are
outside the inner fence are considered to be mild outliers. The NIPN data quality toolkit provides an R
language function outliersUV() that uses the same method to identify outliers:

svy[outliersUV(svy$muac),]

This returns:

Univariate outliers : Lower fence = 98, Upper fence = 178

 age sex weight height muac oedema
 33 24 1 9.8 74.5 180.0 2
 93 12 2 6.7 67.0 96.0 1
126 16 2 9.0 74.6 999.0 2
135 18 2 8.5 74.5 999.0 2
194 24 M 7.0 75.0 95.0 2
227 8 M 6.2 66.0 11.1 2
253 35 2 7.6 75.6 97.0 2
381 24 1 10.8 82.8 12.4 2
501 36 2 15.5 93.4 185.0 2
594 21 2 9.8 76.5 13.2 2
714 59 2 18.9 98.5 180.0 2
752 48 2 15.6 102.2 999.0 2
756 59 1 19.4 101.1 180.0 2
873 59 1 20.6 109.4 179.0 2

12

Figure 3.1. A boxplot to identify outliers in a muac variable.

We can count the number of outliers or use:

 table(outliersUV(svy$muac))

This returns:

 FALSE TRUE
 892 14

We can express this as a proportion:

 prop.table(table(outliersUV(svy$muac)))

This returns:

 FALSE TRUE
 0.98454746 0.01545254

You may find it easier to use percentages:

 prop.table(table(outliersUV(svy$muac))) * 100

13

This returns:

 FALSE TRUE
 98.454746 1.545254

Some of the muac values identified as potential outliers are possible values of muac, which are
underlined:

 age sex weight height muac oedema
 33 24 1 9.8 74.5 180.0 2
 93 12 2 6.7 67.0 96.0 1
126 16 2 9.0 74.6 999.0 2
135 18 2 8.5 74.5 999.0 2
194 24 M 7.0 75.0 95.0 2
227 8 M 6.2 66.0 11.1 2
253 35 2 7.6 75.6 97.0 2
381 24 1 10.8 82.8 12.4 2
501 36 2 15.5 93.4 185.0 2
594 21 2 9.8 76.5 13.2 2
714 59 2 18.9 98.5 180.0 2
752 48 2 15.6 102.2 999.0 2
756 59 1 19.4 101.1 180.0 2
873 59 1 20.6 109.4 179.0 2

The outliersUV() function provides a fence parameter which alters the threshold at which a data
point is considered to be an outlier.

The default is fence = 1.5, which defines the inner fence (i.e 1.5 times the interquartile range below
the lower quartile and above the upper quartile). This will identify mild and severe outliers:

The value fence = 3 defines the outer fence (i.e 3 times the interquartile range below the lower
quartile and above the upper quartile). This will identify severe outliers only:

svy[outliersUV(svy$muac, fence = 3),]

This returns:

Univariate outliers : Lower fence = 68, Upper fence = 208

 age sex weight height muac oedema
126 16 2 9.0 74.6 999.0 2
135 18 2 8.5 74.5 999.0 2
227 8 M 6.2 66.0 11.1 2
381 24 1 10.8 82.8 12.4 2
594 21 2 9.8 76.5 13.2 2
752 48 2 15.6 102.2 999.0 2

There is something wrong with all of these values of muac.

The intention was that the muac variable records mid-upper-arm-circumference (MUAC) in mm. There
are some impossibly small (i.e. 11.1, 12.4, and 13.2) and impossibly large values (i.e. 999.0).

The three impossibly small values are probably due to data being recorded in cm rather than mm. It is
probably safe to change these three values to 111, 124, and 132. It is easiest to do this each record
separately:

 svy$muac[svy$muac == 11.1] <- 111

14

An alternative approach is to specify the row numbers instead of the values:

svy$muac[381] <- 124

svy$muac[594] <- 132

The three 999.0 values are missing values coded as 999.0. It is safe to set these three values to
missing using the special NA value:

svy$muac[svy$muac == 999.0] <- NA

Range checks should be repeated after editing the data to ensure that the problems have been fixed:

summary(svy$muac)

svy[outliersUV(svy$muac),]

svy[outliersUV(svy$muac, fence = 3),]

Figure 3.2 shows a new boxplot of the muac variable made using:

boxplot(svy$muac, horizontal = TRUE, xlab = "MUAC (mm)", frame.plot = FALSE)

after the fixes for incorrectly entered data and missing values were made. There should now be no
severe outliers:

 prop.table(table(outliersUV(svy$muac, fence = 3))) * 100

Returns:

 FALSE
 100

It is usually better to identify and edit only the most extreme univariate outliers, as we have done here,
and use a scatterplot and the statistical distance methods described in Section 8 of this toolkit to
identify other potential outliers.

3.2 Editing data

We have edited records with outliers at the R command line.

It is a good idea to edit data at the command line or using a script containing the required commands.

A script should be saved to provide a record of changes made to the data.

R also keeps a record of whatever you do at the command line in a “history file”. The history file is a
plain text file which is usually called .Rhistory and stored in your home directory.

Some regulatory authorities require you to keep a history file.

Some publications may require you to provide a “reproducible data analysis”. This could be an edited
and annotated copy of your history file.

15

Figure 3.2. A boxplot of the muac variable after editing the incorrectly entered data and recoding

values of 999.0 to NA (missing)

The edit() function provides a basic tool for editing data interactively.

Editing data using the edit() function is typically a three stage process:

1. Create a new object containing only the data that requires editing.

2. Use the edit() function to edit data in the new object closing the data editor window when
you are finished.

3. Replace the old records with the edited records

We will try this using a separate copy of the example data:

x <- read.table("rl.ex01.csv", header = TRUE, sep = ",")

records2update <- x[outliersUV(x$muac, fence = 3),]

records2update <- edit(records2update)

x[row.names(records2update),] <- records2update

16

We can check that the edits have been made using:

x[outliersUV(x$muac, fence = 3),]

If you have fixed the problems in the data this should return:

 age sex weight height muac oedema
 <0 rows> (or 0-length row.names)

The edit() function works differently on different operating systems and with different graphical
user interfaces. If you are using RStudio or RAnalyticFlow on Mac OS X you will need to install XQuartz
if you want to use the edit() function. XQuartz is available from:

 https://www.xquartz.org/index.html

3.3 Checking categorical variables

We can use the table() function to examine the codes used for categorical variables. For example:

 table(svy$sex)

returns:

 1 2 3 F M
404 458 1 24 19

The intention was that the sex variable was coded using 1 for male and 2 for female, but in a small
number of records the codes M for male and F for female have been used. A mixed coding scheme like
this will complicate data management and data analysis. Data in the sex variable should be edited to
ensure that consistent coding is used:

svy$sex[svy$sex == "M"] <- 1

svy$sex[svy$sex == "F"] <- 2

You may find that a few records contain meaningless codes. The code 3 in the example dataset has,
very probably, no meaning and is likely to be a simple data entry error. This record should be checked
and corrected, if possible. If the record cannot be corrected then the sex variable should be set to
missing:

svy$sex[svy$sex == 3] <- NA

Legal value checks should be repeated after editing to ensure that problems have been fixed:

 table(svy$sex)

now returns:

 1 2 3 F M
423 482 0 0 0

https://www.xquartz.org/index.html

17

The table contains cells for the values M, F, and 3 because R imported the variable as a categorical or
“factor” variable:

 str(svy)

returns:

'data.frame': 906 obs. of 6 variables:
 $ age : int 12 6 6 8 12 8 18 9 12 12 ...
 $ sex : Factor w/ 5 levels "1","2","3","F",..: 2 1 2 1 1 1 1 1 2 1 ...
 $ weight: num 6.7 6.4 6.5 7.2 6.1 7.7 6.4 7.8 7.5 6.5 ...
 $ height: num 68.5 65 65.6 68.4 65.4 66.5 66.7 65.3 69.1 70.3 ...
 $ muac : num 148 125 125 144 114 146 119 140 138 121 ...
 $ oedema: int 2 2 2 2 2 2 2 2 2 2 ...

We can fix this by redefining the levels of the sex variable:

 levels(svy$sex) <- c("1", "2", NA, NA, NA)

table(svy$sex)

3.4 Saving changes

We have edited some data.

We usually want to save changes.

It is simple to save a dataset in a comma-separated-value (CSV) text file using the write.table()
function:

 write.table(x = svy, file = "rl.ex01.clean.csv", sep = ",", quote = FALSE,

 row.names = FALSE, fileEncoding = "ASCII")

R can work with a variety of files formats but it is usually simplest to work with plain text files.

18

4. Sex ratio

The male to female sex ratio test checks whether the ratio of the number of males to the number of
females in a survey sample is similar to an expected ratio. The expected male to female sex ratio can be
calculated from census or similar data. If there is no expected value then it is usually assumed that
there should be equal numbers of males and females in the survey sample. This is usually true for
children and young adults but may not be true for older adults.

4.1 Sex ratios in children

We will retrieve a survey dataset:

svy <- read.table("dp.ex02.csv", header = TRUE, sep = ",")

head(svy)

The file dp.ex02.csv is a comma-separated-value (CSV) file containing anthropometric data from a
SMART survey in Kabul, Afghanistan.

It is reported that there are about 2.658 million boys and 2.508 million girls aged between zero and
four years in Afghanistan (2012 estimates).

The male to female sex ratio can be calculated by entering:

2.658 / 2.508

which gives:

1.059809

It is often easier to work with the proportion of the population that is male:

2.658 / (2.658 + 2.508)

which gives:

0.514518

We can compare this to the proportion of the sample that is male:

table(svy$sex)

which gives:

 1 2
438 435

This table is more useful when the cell counts are expressed as proportions:

prop.table(table(svy$sex))

which gives:

 1 2
0.5017182 0.4982818

19

A formal test can be made to compare the observed proportion with the proportion of the population:

prop.test(table(svy$sex), p = 0.514518)

This returns:

 1-sample proportions test with continuity correction

data: table(svy$sex), null probability 0.514518
X-squared = 0.5225, df = 1, p-value = 0.4698
alternative hypothesis: true p is not equal to 0.514518
95 percent confidence interval:
 0.4680459 0.5353752
sample estimates:
 p
0.5017182

The male to female sex ratio (expressed as the proportion male) in the example data is not
significantly different from the expected male to female sex ratio expressed as the proportion that is
male.

The NIPN data quality toolkit provides an R language function called sexRatioTest() that performs
a sex ratio test:

sexRatioTest(svy$sex, codes = c(1, 2), pop = c(2.658, 2.508))

which returns:

 Sex Ratio Test

Expected proportion male = 0.5145
Observed proportion male = 0.5017
X-squared = 0.5225, p = 0.4698

The codes used in the sex variable for male and female are specified using the codes parameter. If sex
was coded using M and F then you would specify codes = c("M", "F").

Population data are specified using the pop parameter (males then females). This can be specified as
numbers or as a ratio. The test above could have been specified as:

sexRatioTest(svy$sex, codes = c(1, 2), pop = c(1.059809, 1))

If (e.g.) you want to specify a one to one sex ratio then you would use pop = c(1, 1).

The typical sex ratio observed at birth is 1.06:1.00 (males to females). This could be used to assess if
selective abortion or female infanticide is taking place, although a large sample size (i.e. about n =
6200) is required for such a test to have sufficient power.

20

4.2 Sex ratios by age-group

The sex ratio test may be performed on each age group separately. You can apply the sex ratio test to
each age-group using the by() function:

svy$ycag <- recode(svy$age, "6:17=1; 18:29=2; 30:41=3; 42:53=4; 54:59=5")

by(svysex, svyycag, sexRatioTest, codes = c(1, 2), pop = c(2.658, 2.508))

Note that the variable ycag created above holds the year-centred age-group.

This approach assumes that the sex ratio is independent of age.

An approach that does not make this assumption is to use the numbers of male and female children in
the same age-ranges in the population taken from census data.

A useful source of census data is the United States Census Bureau’s International Data Base:

 https://www.census.gov/population/international/data/idb/informationGateway.php

This source gives the following estimates for Afghanistan in 2016:

Age
(years)

Number
males

Number
female

Proportion
Male

Proportion
female

Male to female
sex ratio

0 594,602 573,956 0.5088 0.4912 1.04:1.00
1 550,593 533,579 0.5078 0.4922 1.03:1.00
2 526,827 510,479 0.5079 0.4921 1.03:1.00
3 509,048 493,185 0.5079 0.4921 1.03:1.00
4 493,521 478,137 0.5079 0.4921 1.03:1.00

We need to ensure we use the same age-ranges as the census:

svy$ageGroup <- recode(svy$age, "0:11=0; 12:23=1; 24:35=2; 36:47=3; 48:59=4")

and then test the sex ratio in each age group separately:

sexRatioTest(svy$sex[svy$ageGroup == 0], pop = c(594602, 573956))

sexRatioTest(svy$sex[svy$ageGroup == 1], pop = c(550593, 533579))

sexRatioTest(svy$sex[svy$ageGroup == 2], pop = c(526827, 510479))

sexRatioTest(svy$sex[svy$ageGroup == 3], pop = c(509048, 493185))

sexRatioTest(svy$sex[svy$ageGroup == 4], pop = c(493521, 478137))

All of these tests find no significant differences between the observed and expected sex ratios.

It should be noted that some (or all) of the tests might be based on small sample sizes:

 table(svy$ageGroup)

and may, therefore, be able to detect only large differences.

21

4.3 Sex ratios in adults

With data from children we usually expect something like a one to one male to female sex ratio.

This will not usually be the case with adults, especially older adults.

We will retrieve a survey dataset:

svy <- read.table("ah.ex01.csv", header = TRUE, sep = ",")

head(svy)

The file ah.ex01.csv is a comma-separated-value (CSV) file containing anthropometry data from a
Rapid Assessment Method for Older People (RAM-OP) survey in the Dadaab refugee camps in Garissa,
Kenya. This is a survey of older people, defined as people aged sixty years and older.

With this type of survey it is usually possible to use camp administration data to find the expected
male to female sex ratio. This information was not given in the RAM-OP survey report.

The camp population is predominantly Somali. It is reported that there are 188 thousand men and 220
thousand women aged sixty years and older in Somalia (2010 estimates). The sex ratio is:

188 / 220

which is:

0.8545455

The expected proportion of the population that is male is:

188 / (188 + 220)

which is:

0.4607843

The proportion of the sample that is male:

prop.table(table(svy$sex))

is:

0.381113

This looks to be much smaller than the expected proportion. The sex ratio test:

sexRatioTest(svy$sex, codes = c(1, 2), pop = c(188, 220))

reports:

 Sex Ratio Test

Expected proportion male = 0.4608
Observed proportion male = 0.3811
X-squared = 14.8305, p = 0.0001

22

The proportion of males in the sample is significantly smaller than we expected.

This result could be due to the extraordinary nature of the population (e.g. the camp population could
really have very many more older women than older men). It could also due to a selection bias in the
survey. In this example, men were more likely than women to be away from home during the day and
a household sample taken during the day would have systematically excluded the more active
members of the male population.

Note that the sex ratio test only applies to population surveys. If surveys focus on (e.g.) carers of small
children then the observed male to female sex ratio is likely to be strongly biased towards women. In
such cases it is not sensible to apply a sex ratio test.

23

5. Age and sex distributions

Age heaping is the tendency to report children's ages to the nearest year or adult’s ages to the nearest
multiple of 5 or 10 years. Age heaping is very common. It is a major reason why data from nutritional
anthropometry surveys are often analysed and reported using broad age-groups.

5.1 Age and sex distributions: children’s data

The commonest age-groups used with children’s data are 6 to 17 months, 18 to 29 months, 30 to 41
months, 42 to 53 months, and 54 to 59 months (see Figure 5.1). These are known as year-centred age-
groups. Note that the last age-group covers only six months but is nominally centred at five years.
Other age-groups may be used for specific analyses. The techniques presented here can be adapted to
work with other age-groups.

Figure 5.1 The age-groups frequently used when working with data from children.

24

5.1.1 Tabulation and visualisation

We will retrieve a survey dataset:

svy <- read.table("dp.ex02.csv", header = TRUE, sep = ",")

head(svy)

The file dp.ex02.csv is a comma-separated-value (CSV) file containing anthropometric data from a
SMART survey in Kabul, Afghanistan.

The NIPN data quality toolkit provides an R language function called recode() that makes it easy to
recode and group any data. We will use the recode() function to group the data in the age variable
(age in months) into year-centred age-groups.

svy$ycag <- recode(svy$age, "6:17=1; 18:29=2; 30:41=3; 42:53=4; 54:59=5")

head(svy)

A tabular analysis can be performed:

table(svy$ycag, svy$sex)

prop.table(table(svy$ycag, svy$sex)) * 100

The table() function performs a cross-tabulation. The first variable specified (svy$ycag in this
example) is the row variable. The second variable specified (svy$sex in this example) is the column
variable.

It is useful to examine row percentages and column percentages in tables of age-group by sex.

We should look at row percentages:

prop.table(table(svy$ycag, svy$sex), margin = 1) * 100

25

This returns:

 1 2
1 48.79227 51.20773
2 51.51515 48.48485
3 52.28216 47.71784
4 48.75000 51.25000
5 46.26866 53.73134

Which shows approximately equal proportions of males and females in each year-centred age-group.
We specified margin = 1 with the prop.table() function because we wanted row percentages.

We should also look at column percentages:

prop.table(table(svy$ycag, svy$sex), margin = 2) * 100

This returns:

 1 2
1 23.059361 24.367816
2 23.287671 22.068966
3 28.767123 26.436782
4 17.808219 18.850575
5 7.077626 8.275862

We specified margin = 2 with the prop.table() function because we wanted column percentages.
We expect there to be approximately equal proportions of children in the age-groups centred at 1, 2, 3,
and 4 years and a smaller proportion (i.e. about half that in the other age-groups) in the age-group
centred at 5 years.

A graphical analysis using a population pyramid can be useful. The NIPN data quality toolkit provides
an R language function called pyramid.plot() for plotting population pyramids:

pyramid.plot(svy$ycag, svy$sex)

We can make the plot more informative by specifying a title and axis labels:

pyramid.plot(svy$ycag, svy$sex, main = "Distribution of age by sex",
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group")

and applying shading:

pyramid.plot(svy$ycag, svy$sex, main = "Distribution of age by sex",
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group",
 col = c("grey80", "white"))

or colours:

pyramid.plot(svy$ycag, svy$sex, main = "Distribution of age by sex",
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group",
 col = c("pink","lightblue"))

We expect there to be approximately equal numbers of children in the age-groups centred at 1, 2, 3,
and 4 years and a smaller number (i.e. about half the number in the other age-groups) in the age-group
centred at 5 years. There should also be approximately equal numbers of males and females. This is
what we see in the population pyramid (see Figure 5.2).

26

Figure 5.2 Pyramid plot showing distribution of (grouped) age by sex.

The pyramid.plot() function uses the values of the grouped age variable as y-axis value labels.

We can assign descriptive text values using the recode() function. For example:

 svy$ageLabel <- recode(svy$age, "6:29='< 30 months'; 30:hi='30 month or older'")

pyramid.plot(svy$ageLabel, svy$sex, main = "Distribution of age by sex",
xlab = "Frequency (Males | Females)", ylab = "Age-group")

We can also use a factor type variable. This type of variable allows labels to be specified:

 svy$ageLabel <- factor(svy$ycag,
 labels = c("6:17", "18:29", "30:41", "42:53", "54:59"))

pyramid.plot(svy$ageLabel, svy$sex, main = "Distribution of age by sex",
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group")

The cut() function may also be used:

svy$ageCuts <- cut(svy$age, breaks = c(0, 17, 29, 41, 53, 59))

pyramid.plot(svy$ageCuts, svy$sex, main = "Age-group (months) ",
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group",
 cex.names = 0.9)

The cut() function is a versatile grouping function. It is explained in more detail later in this section.

27

The cex.names parameter of the pyramid.plot() function allows us to change the size of the value
labels on the y-axis. The value for cex.names is a magnification factor. Values above one make the
labels larger than the default; values below one make the labels smaller than the default.

5.1.2 Simple testing

It is possible to perform a formal test on the distribution of age-groups by sex.

A simple test is:

chisq.test(table(svy$ycag, svy$sex))

This yields:

 Pearson's Chi-squared test

data: table(svy$ycag, svy$sex)
X-squared = 1.2675, df = 4, p-value = 0.8669

In this example the p-value is not below 0.05 so we accept the null hypothesis that there is no
significant association between age and sex. This is an important test as it tests whether the
distribution of ages is similar for males and females. It does not, however, test whether the age
structure in the sample meets expectations. This requires a test that compares the observed numbers
with the expected numbers derived from an external source such as census data or from a
demographic model.

5.1.3 A model of the expected age structure

A simple model-based method for calculating expected numbers is exponential decay in a population in
which births and deaths balance each other and with a 1:1 male to female sex ratio. Under this model
the proportion surviving in each group at each year can be calculated as:

in which e is the base of the natural logarithm (approximately 2.7183), z is the mortality rate
associated with each time period, and t is time. Time (t) starts at zero for the purposes of computation.
Age can be used as a measure of time since birth. We should use 0 for the first year-centred age-group,
1 for the second year-centred age-group, and so-on. This is the rationale for using t <- 0:4 below.

With five year-centred age-groups and a mortality rate of 1 / 10,000 / day, the expected proportions
surviving at each year can be calculated as:

z <- (1 / 10000) * 365.25

t <- 0:4

p <- exp(-z * t)

p

This yields the following survival probabilities:

1.0000000 0.9641340 0.9295544 0.8962149 0.8640713

We need to specify the duration (i.e. the number of years) represented by each age-group:

d <- c(1, 1, 1, 1, 0.5)

28

We can then calculate expected proportions of children in each age-group:

ep <- d * p / sum(d * p)

ep

This gives:

0.2368580 0.2283628 0.2201724 0.2122757 0.1023311

We can now calculate expected numbers:

expected <- ep * sum(table(svy$ycag))

names(expected) <- 1:5

expected

giving:

 1 2 3 4 5
206.77703 199.36076 192.21049 185.31667 89.33505

A formal test would compare the observed numbers with the expected numbers. The observed
numbers can be found using:

observed <- table(svy$ycag)

observed

This gives:

 1 2 3 4 5
 207 198 241 160 67

It can be useful to examine observed and expected numbers graphically:

par(mfcol = c(1, 2))

barplot(observed, main = "Observed", xlab = "Age group", ylab = "Frequency",
ylim = c(0, 250))

barplot(expected, main = "Expected", xlab = "Age group", ylab = "Frequency",
ylim = c(0, 250))

See Figure 5.3.

29

Figure 5.3 Observed and expected numbers of children in each age-group under the
assumptions of a uniform sex ratio, no population growth, exponential decay, and a mortality
rate of one death per ten thousand children per day (1 / 10,000 / day).

We can calculate a Chi-squared test statistic:

using:

X2 <- sum((observed - expected)^2 / expected)

X2

which yields a Chi-Squared test statistic of:

21.43662

We can find the p-value using:

pchisq(X2, df = 4, lower.tail = FALSE)

This gives:

0.000259395

In this example the age distribution is significantly different from the expected numbers calculated
using a simple demographic model.

30

Note that we specify the degrees of freedom (df) for the Chi-Squared test as the number of age-groups
minus one. As we have five age-groups we specify df = 4. The degrees of freedom (df) that we need
to specify will depend on the number of age-groups that we use. It is always the number of age-groups
minus one. If, for example, there are ten age-groups we would need to specify df = 9.

The NIPN data quality toolkit provides an R function called ageChildren() that performs the model-
based Chi-Squared test:

ageChildren(svy$age, u5mr = 1)

which returns:

 Age Test (Children)

X-squared = 21.4366, df = 4, p = 0.0003

Note that we specified the under five years mortality rate as 1 / 10,000 / day using u5mr = 1.
Another, more appropriate, rate may be specified.

The ageChildren() function calculates year-centred age-groups for children aged between six and
fifty-nine months by default. This is a standard survey population and is used in SMART and many
other surveys. The use of year-centred age-groups is also standard practice. The commands that are
given above can, however, be adapted for use with different age-groups.

The output of the ageChildren() function can be saved for later use:

 ac <- ageChildren(svy$age, u5mr = 1)

The saved output contains the Chi-squared test results and tables of observed and expected values.

These can be accessed using:

ac

ac$X2

ac$df

ac$p

ac$observed

ac$expected

The saved results may also be plotted:

plot(ac)

The ageChildren() function can be applied to each sex separately.

To males:

acM <- ageChildren(svy$age[svy$sex == 1], u5mr = 1)

acM

plot(acM)

31

and to females:

acF <- ageChildren(svy$age[svy$sex == 2], u5mr = 1)

acF

plot(acF)

An easier way of doing this is:

by(svyage, svysex, ageChildren, u5mr = 1)

The test statistics should be interpreted with caution. A significant test result may, for example, be due
to the use of an inappropriate model to generate the expected numbers.

A significant result in this particular test may be due to:

Specifying an inappropriate under five years mortality rate. This is a particular problem
because the specified under five years mortality rate is assumed to have applied for five years
prior to data being collected.

The assumption of a 1:1 male to female sex ratio. This is a particular problem in settings in
which there is sex-selective abortion and sex-selective infanticide.

The model is crude. Mortality is related to age. Younger children have a greater mortality risk than
older children but an average mortality rate for children under five years is used in the calculations. A
more sophisticated model could be used but, in many settings, we will not have the data required to
apply such a model.

It should also be noted that the sample sizes used in most survey can cause tests to yield statistically
significant results for small differences between observed and expected numbers.

5.1.4 Use of census data

The use of simple demographic models is far from ideal. It is usually better to calculate the expected
proportions from census data. A useful source of census data is the United States Census Bureau’s
International Data Base:

https://www.census.gov/population/international/data/idb/informationGateway.php

The population in single year age-groups for 0, 1, 2, 3, and 4 years for Afghanistan in 2015 was:

Age Both Sexes Males Females
 0 1,148,379 584,276 564,103
 1 1,062,635 539,589 523,046
 2 1,015,688 515,793 499,895
 3 981,288 498,365 482,923
 4 950,875 482,926 467,949

We can calculate expected values from these data:

pop <- c(1148379, 1062635, 1015688, 981288, 950875)

 ep <- pop / sum(pop)

32

With a sample size of n = 900 the expected number in each age-group would be:

 expected <- ep * 900

 expected

These expected values can be used in a Chi-squared test as is illustrated above.

Census data may also be used to estimate the under five years’ mortality rate (U5MR) which can then
be used with the ageChildren() function.

The model of exponential decay in a population in which births and deaths balance each other with a
1:1 male to female sex ratio:

means that we can, given an age-distribution, estimate mortality by fitting the model:

where n is the count of children in each age-group.

The absolute value of the β coefficient is the point estimate of the mortality rate (z). Using the 2015
population data for Afghanistan:

 t <- 0:4

 lm(log(pop) ~ t)

This gives:

 Coefficients:
 (Intercept) t
 13.93601 -0.04571

The value reported under t is the β coefficient (-0.04571). The absolute value of the β coefficient (i.e.
the value without the sign) is 0.04571. This is the point estimate of the mortality rate. Expressed as
the number of deaths / 10,000 persons / day:

 (0.04571 / 365.25) * 10000

this is:

 1.251472

We can use this estimate with the ageChildren() function:

 ageChildren(svy$age, u5mr = 1.251472)

33

5.1.5 The age ratio

A much simpler and less problematic age-related test of survey and data quality is the age ratio test.

The age ratio is defined as:

We will use the recode() function from NIPN data quality toolkit to create the relevant age-groups:

svy$ageGroup <- recode(svy$age, "6:29=1; 30:59=2")

head(svy)

The observed age ratio is:

sum(svy$ageGroup == 1) / sum(svy$ageGroup == 2)

which gives:

0.8653846

It is often easier to work with proportions than with ratios, so we only need to calculate the
proportion in the younger age-group:

 sum(svy$ageGroup == 1) / sum(table(svy$ageGroup))

which gives:

0.4639175

We can calculate an expected value using census data or a simple demographic model. The simplest
approach is to use a standard value. SMART surveys often use the ratio 0.85:1 (SMART, 2015, p11).

We only need to calculate the expected proportion in the younger group. For the ratio 0.85:1 this is:

p <- 0.85 / (0.85 + 1)
p

This gives:

0.4594595

The observed proportion (0.4639175) and expected proportion (0.4594595) are so similar that a
formal test of statistical significance is not required in this case.

Formal testing can be done using a Chi-squared test:

prop.test(sum(svy$ageGroup == 1), sum(table(svy$ageGroup)), p = 0.4594595)

34

This returns:

 1-sample proportions test with continuity correction

data: sum(svy$ag == 1) out of sum(table(svy$ag)), null probability 0.4594595
X-squared = 0.053062, df = 1, p-value = 0.8178
alternative hypothesis: true p is not equal to 0.4594595
95 percent confidence interval:
 0.4304994 0.4976573
sample estimates:
 p
0.4639175

The age ratio in the example data is not significantly different from the expected age ratio.

The NIPN data quality toolkit provides an R function called ageRatioTest() that performs the age
ratio test:

ageRatioTest(svy$age, ratio = 0.85)

This returns:

 Age Ratio Test

 Expected age ratio = 0.8500
Expected proportion aged 6 - 29 months = 0.4595

 Observed age ratio = 0.8654
Observed proportion aged 6 - 29 months = 0.4639

X-squared = 0.0531, p = 0.8178

The ratio parameter of the ageRatioTest() function allows you to specify an expected age ratio
other than 0.85:1.

Note that the ageRatioTest() function applies the test to data from children aged between 6 and 59
months only, all other ages are ignored.

The age ratio test might be applied to data from both sexes (as above) and to each sex separately:

by(svyage, svysex, ageRatioTest, ratio = 0.85)

The example data meets expectations regarding the age ratio for all children and for male and female
children separately.

35

5.2 Age and sex distributions: adults and general population surveys

A key test of survey quality is whether the survey data represents the population in terms of the age
and sex distribution. We can test this by comparison with census data.

We will retrieve some example data:

svy <- read.table("as.ex01.csv", header = TRUE, sep = ",")

head(svy)

These data are taken from household rosters collected as part of a household survey in Tanzania.

We will use census data taken from the Wolfram|Alpha knowledge engine:

http://www.wolframalpha.com/input/?i=Tanzania+age+distribution

Another useful source of census data is the United States Census Bureau’s International Data Base:

https://www.census.gov/population/international/data/idb/informationGateway.php

The pyramid plot produced by Wolfram|Alpha is shown in Figure 5.4.

36

Figure 5.4 Pyramid plot of the age and sex distribution in Tanzania computed by the Wolfram|Alpha
knowledge engine (2010 estimates)

The table produced by Wolfram|Alpha was downloaded and stored in a CSV file:

ref <- read.table("as.ex02.csv", header = TRUE, sep = ",")

ref

The age-groups are expressed using the form specified in ISO 31-11, an international standard that
applies to mathematical symbols. The form [a,b) expresses the interval a ≤ x < b. For example,
[30,35) is used to indicate the set {30, 31, 32, 33, 34} of ages in years. The form [a,b) is said
to be closed on the left and open on the right.

The reference data (ref) uses five-year age-groups. We will create the same age-groups in the
example dataset.

We should first check the range of ages in the example data:

range(svy$age)

37

which returns:

0 93

The R language provides a function that makes it easy to create ISO 31-11 groupings from raw data:

svy$ageGroup <-cut(svy$age, breaks = seq(from = 0, to = 95, by = 5),
include.lowest = TRUE, right = FALSE)

Using include.lowest = TRUE tells the cut() function to include the lowest breaks value (zero in
this case). Using right = FALSE tells the cut() function to use groupings that are closed on the left.
This combination of parameters creates the same “closed on the left” and “open on the right” age-
groups as are used in the reference (ref) data:

table(svy$ageGroup)

A tabular analysis of age-group by sex can be produced using:

table(svy$ageGroup, svy$sex)

A visual inspection is useful:

pyramid.plot(svy$ageGroup, svy$sex)

We can make this easier to read:

 pyramid.plot(svy$ageGroup, svy$sex, main = "Age-group by sex",

xlab = "Number (Males | Females)", ylab = "", las = 1, cex.names = 0.9)

See Figure 5.5.

Figure 5.5 Pyramid plot of the age and sex distribution in the Tanzania survey dataset.

38

Note that we specified ylab = "" because it is clear that the category labels represent age-groups and
to prevent the y-axis label from obscuring the category labels, which happens with:

 pyramid.plot(svy$ageGroup, svy$sex, main = "Age-group by sex",

xlab = "Number (Males | Females)", ylab = "Age-group", las = 1,
 cex.names = 0.9)

It is possible to alter the number of lines of text in margins of the plot, reduce the size of the age-group
labels, and place the y-axis label on a specific line in the left margin of the plot in order to make a
clearer plot:

 par(mar = c(5, 5, 4, 2))

 pyramid.plot(svy$ageGroup, svy$sex, main = "Age-group by sex",
xlab = "Number (Males | Females)", ylab = "", las = 1, cex.names = 0.8)

 title(ylab = "Age-group", line = 4)

The easiest way of checking whether the survey data represents the general population in terms of the
age and sex distribution is to compare the observed (Figure 5.5) and expected (Figure 5.4)
distributions. The general shapes of the two distributions are similar. Some of the lumpiness in Figure
5.5 is due to age heaping in the adult ages at decades and half-decades:

ah <- ageHeaping(svy$age, divisor = 10)

plot(ah, main = "Remainder of age / 10")

See Figure 5.6.

Figure 5.6 Age heaping in the Tanzania dataset. Age heaping at 20, 30, 40, 50, 60, 70, and 80 years can
also be seen in Figure 5.5 and Figure 5.7.

39

A more formal test of the age structure can be made by comparing observed and expected numbers.

We can do this graphically:

ref <- ref[1:19,]

expectedProportions <- ref$All / sum(ref$All)

expectedNumbers <- expectedProportions * sum(table(svy$ageGroup))

mp <- barplot(table(svy$ageGroup), main = "Observed and expected numbers",
ylim = c(0, max(expectedNumbers)), las = 2)

lines(mp, expectedNumbers, lty = 2, lwd = 2)

The observed and expected numbers are similar to each other. The lumpiness in the observed
numbers is due to age heaping. See Figure 5.7.

Figure 5.7 Observed and expected numbers in the Tanzania survey dataset. Bars show observed
numbers. The dashed line shows expected numbers.

Formal testing can be performed:

chisq.test(table(svy$ageGroup), p = expectedProportions)

40

This gives:
 Chi-squared test for given probabilities

data: table(svy$ag)
X-squared = 248.41, df = 18, p-value < 2.2e-16

Warning message:
In chisq.test(table(svy$ag), p = expectedProportions) :
 Chi-squared approximation may be incorrect

The warning message is due to small expected numbers (i.e. n < 5) in the older age-groups. R provides
a more robust “Monte Carlo” test:

chisq.test(table(svy$ageGroup), p = expectedProportions, simulate.p.value = TRUE)

This may take a few seconds to compute and yields:

 Chi-squared test for given probabilities ...

data: table(svy$ag)
X-squared = 248.41, df = NA, p-value = 0.0004998

The test results need to be interpreted with caution. The sample size (n = 8736) is large in this
example. This means that small differences, which may be due to age heaping, become statistically
significant. This test cannot be considered to be good evidence that the age-structure of the sample
differs from the expected age-structure of the population.

We also need to examine the sex ratio of the sample. A sex ratio test can be performed using the
sexRatioTest() function from the NIPN data quality toolkit and the sex ratio observed in the census
data:

censusM <- sum(ref$Males)

censusF <- sum(ref$Females)

sexRatioTest(svy$sex, codes = c(1, 2), pop = c(censusM, censusF))

This yields:

 Sex Ratio Test

Expected proportion male = 0.4988
Observed proportion male = 0.4914
X-squared = 1.8770, p = 0.1707

There is no evidence that the sex ratio in the sample differs much from the expected sex ratio in the
population.

The techniques outlined in this section are illustrative. This is because many surveys, other than
nutritional anthropometry surveys in young children, are not standardised. A survey may sample only
women of child-bearing age, so the sample may be restricted to women aged between 15 and 45 years.
In this case the age-structure can be examined using the techniques outlined above but it would make
no sense to examine the sex ratio. Care should be taken when examining data from surveys that may
have deliberately oversampled specific age-groups.

41

6. Digit preference in anthropometric measurements

Measurements in nutritional anthropometry surveys are usually taken and recorded to one decimal
place. Examples are given in Table 6.1.

Table 6.1 Common measurements used in anthropometric surveys.

Variable Unit Precision Example Notes

Weight kg Nearest 0.1 kg 8.7 kg Most surveys use scales with a 0.1 kg precision.

Height / length cm Nearest 0.1 cm 85.3 cm Height boards tend to have a 0.1 cm precision.

MUAC

cm Nearest 0.1 cm 13.7 cm
MUAC may be measured and recorded in
centimetres or millimetres. Sometimes both may
be used in the same survey. You will need to
check this and recode data to use only a single
format / precision.

mm Nearest 1 mm 137 mm

Digit preference is the observation that the final number in a measurement occurs with a greater
frequency that is expected by chance. This can occur because of rounding, which is the practice of
increasing or decreasing the value in a measurement to the nearest whole or half unit, or because data
are made up.

When taking and recording measurements in the field it is common for field staff to round the first
value after the decimal point to zero or five. Measurements in whole numbers may also be rounded to
the nearest decade (e.g. 137 mm may be rounded to 140 mm) or half-decade (e.g. 137 mm may be
rounded to 135 mm). A small number of rounded measurements is unlikely to affect survey results. A
large number of rounded measurements can affect survey results particularly if measurements have
been systematically rounded in one direction. This is a form of bias.

Made up data often shows digit preference with (e.g.) ”2” and “6” appearing as final digits much more
frequently than expected. This happens because, without using a computer, a large quantity of random
data is very much harder to make up than merely random-looking data.

If there were little or no digit preference in anthropometric data then we would expect the final
recorded digit of each measurement to occur with approximately equal frequency. We can check if
digit preference is absent in data by testing whether this is the case.

6.1 Tabulation and visualisation

First we will work with some artificial data:

set.seed(0)

finalDigits <- sample(x = 0:9, size = 1000, replace = TRUE)

The use of set.seed() resets the pseudorandom number generator. This ensures that the results
shown here are the same as you will get when you follow the example analyses.

You should always examine data before performing any formal tests.

A table can be useful:

table(finalDigits)

42

This returns:

finalDigits
 0 1 2 3 4 5 6 7 8 9
 96 104 91 113 115 85 90 107 89 110

We can look at proportions instead of counts:

prop.table(table(finalDigits))

This returns:

 0 1 2 3 4 5 6 7 8 9
0.096 0.104 0.091 0.113 0.115 0.085 0.090 0.107 0.089 0.110

If you prefer working with percentages then:

prop.table(table(finalDigits)) * 100

returns:

 0 1 2 3 4 5 6 7 8 9
 9.6 10.4 9.1 11.3 11.5 8.5 9.0 10.7 8.9 11.0

Examining data graphically is very useful:

barplot(table(finalDigits), xlab = "Final digit", ylab = "Frequency")

We can add a line showing our expectation that each final digit should occur about 10% of the time:

abline(h = sum(table(finalDigits)) / 10, lty = 3)

The resulting plot is shown in Figure 6.1.

Figure 6.1. Example (generated) data with little or no digit preference. The dotted line shows
expected values.

43

The tabular and graphical analyses are consistent with there being little or no digit preference in the
generated data.

Both analyses agree with the expectation that each final digit should occur about 10% of the time.

All we are seeing is random variation.

We can use a formal test to confirm this:

chisq.test(table(finalDigits))

This returns:

X-squared = 11.02, df = 9, p-value = 0.2743

In this example the p-value is not below 0.05 so we accept the null hypothesis that there is no digit
preference.

It is important to check that each digit between zero and nine is represented in tables and plots.

Missing digits can indicate strong digit preference.

The NIPN data quality toolkit provides the fullTable() function. This R language function produces
a table that includes cells with zero counts.

As an example we will remove all the values with a final digit equal to 6 from our generated data:

finalDigits[finalDigits == 6] <- NA

and see the effect:

table(finalDigits)

prop.table(table(finalDigits)) * 100

barplot(table(finalDigits), xlab = "Final digit", ylab = "Frequency")

abline(h = sum(table(finalDigits)) / 10, lty = 3)

chisq.test(table(finalDigits))

This is a misleading analysis. It is very easy to miss that there are no final digits equal to 6 in the data.
The plot is misleading because the final digit 6 is not represented and we assumed that there were ten
rather than nine final digits when we calculated the expected frequencies. The Chi-squared test is not
correct because it does not account for there being zero cases in which the final digit is equal to 6.

The fullTable() function avoids these issues:

fullTable(finalDigits)

prop.table(fullTable(finalDigits)) * 100

barplot(fullTable(finalDigits), xlab = "Final digit", ylab = "Frequency")

abline(h = sum(fullTable(finalDigits)) / 10, lty = 3)

chisq.test(fullTable(finalDigits))

44

The Chi-squared test (incorrectly) calculated without the zero cell:

 X-squared = 9.8, df = 8, p-value = 0.2793

indicates that there is no problem with the data.

The chi-square test (correctly) calculated with the zero cell:

X-squared = 112, df = 9, p-value < 2.2e-16

indicates that there is a problem with the data.

Note that we use sum(fullTable(finalDigits)) / 10 (i.e. we divide by ten) because we know
that there should be ten final digits (i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

There is an issue with using hypothesis test such as the chi-squared test. Test values are strongly
influenced by the sample size and can yield false-negative results when used with small sample sizes
and false-positive results when used with large sample sizes.

We can illustrate this by generating some new artificial data with marked digit preference:

finalDigits <- as.table(x = c(11, 7, 5, 4, 7, 11, 5, 4, 4, 2))

names(finalDigits) <- 0:9

This creates a table object containing counts of imaginary final digits.

Looking at these data:

finalDigits

prop.table(finalDigits) * 100

barplot(finalDigits, xlab = "Final digit", ylab = "Frequency")

abline(h = sum(finalDigits) / 10, lty = 3)

There is a marked digit preference for zero and five (Figure 6.2).

The Chi-squared test:

chisq.test(finalDigits)

returns:

X-squared = 13.667, df = 9, p-value = 0.1347

In this example the Chi-squared test has failed to detect marked digit preference. This is a false
negative test result. The failure of the Chi-squared test in this example is due to the small number of
observations (i.e. n = 60) used in the analysis.

A tabular and graphical analysis was required to identify the digit preference problem in this example.

45

Figure 6.2 Example (generated) data with marked digit preference. The dotted line shows expected
values.

We will usually be working with large sample sizes. This can bring the problem of false positives.

We will generate some artificial data:

set.seed(3)

finalDigits <- sample(x = 0:9, size = 1000, replace = TRUE)

These data will approximate the properties of a set of true uniformly random numbers.

Any digit preference that we might observe in these data is due solely to chance.

The generated data appear to exhibit some digit preference:

table(finalDigits)

prop.table(fullTable(finalDigits)) * 100

barplot(fullTable(finalDigits), xlab = "Final digit", ylab = "Frequency")

abline(h = sum(fullTable(finalDigits)) / 10, lty = 3)

but this digit preference is not especially marked. See Figure 6.3.

The Chi-squared test:

chisq.test(fullTable(finalDigits))

yields:

X-squared = 18.5, df = 9, p-value = 0.0298

which suggests significant digit preference.

46

Figure 6.3 Example (generated) data with little or no digit preference. The dotted line shows
expected values.

This is a false positive result because the generated data is constrained to be uniformly random and
any digit preference that we observed is due solely to chance.

The failure of the Chi-squared test in this example is due to the test mistaking random variation for
digit preference which is, in part, due to the use of a large (i.e. n = 1000) number of observations.

It is also important to note that any test with a p < 0.05 significance threshold will generate a positive
result in 1 in 20 tests of data that exhibit nothing but random variation. All tests with a p < 0.05
significance threshold have a 5% false positive rate.

6.2 Avoiding false positives using the digit preference score

The problem of false-positives can be addressed by using a summary measure that takes the effect of
sample size into account. A widely used method is the digit preference score (DPS). The DPS was
developed by the World Health Organization for the MONICA project:

 http://www.thl.fi/publications/monica/bp/bpqa.htm

The DPS corrects the Chi-squared statistic (Χ2) for the sample size (n) and the degrees of freedom (df)
of the test:

This has the effect of “desensitising” the Chi-squared test.

The DPS can be used with anthropometric data from all types of surveys and may also be applied to
clinical data. A low DPS value indicates little or no digit preference; a high DPS value indicates
considerable digit preference.

http://www.thl.fi/publications/monica/bp/bpqa.htm

47

Guideline values for DPS are shown in Table 6.2.

Table 6.2 Guideline thresholds for the digit preference score (SMART, 2015)

DPS value Interpretation
0 ≤ DPS < 8 Excellent

8 ≤ DPS < 12 Good
12 ≤ DPS < 20 Acceptable

DPS ≥ 20 Problematic

The NIPN data quality toolkit provides the R language function digitPreference() for calculating
the DPS. Applying this function to the example data:

digitPreference(finalDigits, digits = 0)

yields:

 Digit Preference Score

data: finalDigit
Digit Preference Score (DPS) = 4.53 (Excellent)

which is consistent with there being little or no digit preference in the example data.

The output of the digitPreference() function can be saved for later use:

 dpsResults <- digitPreference(finalDigits, digits = 0)

The saved output contains the DPS value and frequency tables of the final digits (counts and
percentages). These can be accessed using:

dpsResults$dps

dpsResults$tab

dpsResults$pct

dpsResults$dpsClass

The saved results may also be plotted:

plot(dpsResults, main = "finalDigit example data")

The resulting plot is shown in Figure 6.4.

48

Figure 6.4 An example DPS plot made using the digitPreference() function.

We will now practice using the digitPreference() function on survey data.

We will start by retrieving some survey data:

svy <- read.table("dp.ex01.csv", header = TRUE, sep = ",")

The file dp.ex01.csv is a comma-separated-value (CSV) file containing anthropometric data for
children in a single state of a West African country in a Demographic and Health Survey (DHS).

The first few records in this dataset can be seen using:

 head(svy)

This returns:

 psu age sex wt ht oedema
1 330 14 1 5.0 65.6 2
2 330 54 2 12.1 99.0 2
3 330 25 1 8.9 59.5 2
4 330 52 1 14.6 98.0 2
5 330 43 1 10.1 99.1 2
6 330 7 1 4.0 58.1 2

The two variables of interest are wt (weight) and ht (height).

We can examine digit preference in the variable for weight (wt) using:

 digitPreference(svy$wt, digits = 1)

49

which returns:

 Digit Preference Score

data: svy$wt
Digit Preference Score (DPS) = 11.86 (Good)

We can plot digit preference using:

 plot(digitPreference(svy$wt, digits = 1), main = "Weight")

The resulting plot is shown in Figure 6.5.

The weight data shows some digit preference and would be classified as “Good” using the
classifications shown in Table 6.2 (above).

Figure 6.5 DPS for weight in part of a DHS survey

We can examine digit preference in the variable for height (ht) using:

digitPreference(svy$ht, digits = 1)

plot(digitPreference(svy$ht, digits = 1), main = "Height")

The DPS value (22.77) and the DPS plot (Figure 6.6) show considerable digit preference in the height
(ht) variable. This would be classified as “Problematic” using the classifications shown in Table 6.2
(above).

Note that we specified digits = 1 when we used the digitPreference() function for the weight
and height data in the example DHS data. This is because these variables are measured and recorded
to one decimal place.

50

Figure 6.6 DPS for height in part of a DHS survey

If we were using the digitPreference() function with MUAC data that is measured and recorded as
whole numbers (i.e. with no decimal places) then we should specify digits = 0. For example:

svy <- read.table("dp.ex02.csv", header = TRUE, sep = ",")

The file dp.ex02.csv is a comma-separated-value (CSV) file containing anthropometric data from a
SMART survey in Kabul, Afghanistan.

The first few records in this dataset can be seen using:

 head(svy)

which returns:

 psu age sex weight height muac oedema
1 1 6 1 7.3 65.0 146 2
2 1 42 2 12.5 89.5 156 2
3 1 23 1 10.6 78.1 149 2
4 1 18 1 12.8 81.5 160 2
5 1 52 1 12.1 87.3 152 2
6 1 36 2 16.9 93.0 190 2

The variable of interest is muac (MUAC). This variable is measured and recorded in whole millimetres.

We can examine digit preference in the MUAC variable using:

digitPreference(svy$muac, digits = 0)

plot(digitPreference(svy$muac, digits = 0), main = "MUAC")

51

The DPS value (13.08) and the DPS plot (Figure 6.7) show considerable digit preference and would be
classified as “Acceptable” using the classifications shown in Table 6.2.

Figure 6.7 DPS for MUAC in a SMART survey.

6.3 Some warnings

The material presented here has assumed that data are recorded with a fixed precision (e.g. one
decimal place for weight and height, no decimal places for MUAC). It may be the case that data are
recorded with mixed precision. For example, the weights of younger children may be measured using
“baby scales” and recorded to the nearest 10 g (i.e. to two decimal places) and the weights of older
children measured using “hanging scales” and recorded to the nearest 100 g (i.e. to one decimal place).
These sorts of situations can be difficult to handle automatically since (e.g.) 3.1 and 3.10 are the same
number and both will be stored in the same way. The easiest approach is to treat the data as two
separate datasets when examining digit preference.

Care should be taken to ensure that you do not mistake the limitations of the measuring instrument
for digit preference. For example, some designs of MUAC tape can only return measurements with an
even number for the final digit. In this case you should never see MUAC measurements with 1, 3, 5, 7,
or 9 as the final digit. This limitation of the instrument would look like digit preference. The
digitPreference() function can handle this situation.

We will retrieve a dataset:

svy <- read.table("dp.ex03.csv", header = TRUE, sep = ",")

head(svy)

52

The file dp.ex03.csv is a comma-separated-value (CSV) file containing anthropometric data for a
sample of children living in a refugee camp in a West African country.

MUAC was measured using a “numbers in boxes” design MUAC tape:

There can only be even numbers in the final digit when this type of MUAC tape is used.

We should check this:

 table(svy$muac)

This returns:

 108 114 118 120 122 124 126 128 130 132 134 136 138 140 142 144
 1 1 3 3 2 6 5 5 21 8 16 23 20 16 32 26

 146 148 150 152 154 156 158 160 162 164 166 168 170 174 176 178
 24 22 16 25 16 14 19 8 7 7 9 3 11 2 2 1

There are only even numbers. Any odd number would be a recording error or a data-entry error.

We can examine digit preference in these data using the digitPreference() function:

 digitPreference(svy$muac, digits = 0)

This returns:

 Digit Preference Score

 data: svy$muac
 Digit Preference Score (DPS) = 33.34 (Problematic)

This is misleading because the digitPreference() function assumes that all possible final digits (i.e.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9) should be present. This is not the case in the example data.

We can examine this using:

 digitPreference(svy$muac, digits = 0)$tab

which returns:

 0 1 2 3 4 5 6 7 8
 75 0 74 0 74 0 77 0 74

We can use the values parameter of the digitPreference() function to specify the values that are
allowed in the final digit:

53

 digitPreference(svy$muac, digits = 0, values = c(0, 2, 4, 6, 8))

This returns:

 Digit Preference Score

 data: svy$muac
 Digit Preference Score (DPS) = 0.78 (Excellent)

The DPS has changed from 33.34 (“Problematic”) to 0.78 (“Excellent”).

We can tabulate and plot the frequency of final digits in the muac variable:

 dpsResults <- digitPreference (svy$muac, digits = 0, values = c(0, 2, 4, 6, 8))

dpsResults$tab

dpsResults$pct

 plot(dpsResults)

See Figure 6.8.

Figure 6.8 DPS for MUAC in a survey using a “numbers in boxes” design MUAC tape

54

7. Age heaping

This section depends on some of the material presented in Section 6 relating to digit preference.

Age heaping is the tendency to report children's ages to the nearest year or adults’ ages to the nearest
multiple of five or ten years. Age heaping is very common. This is a major reason why data from
nutritional anthropometry surveys is often analysed and reported using broad age groups.

7.1 Summarising, tabulating, and visualising age data

We will retrieve a survey dataset:

svy <- read.table("dp.ex02.csv", header = TRUE, sep = ",")

The file dp.ex02.csv is a comma-separated-value (CSV) file containing anthropometric data from a
SMART survey in Kabul, Afghanistan.

The first few records in this dataset can be seen using:

head(svy)

This returns:

 psu age sex weight height muac oedema
1 1 6 1 7.3 65.0 146 2
2 1 42 2 12.5 89.5 156 2
3 1 23 1 10.6 78.1 149 2
4 1 18 1 12.8 81.5 160 2
5 1 52 1 12.1 87.3 152 2
6 1 36 2 16.9 93.0 190 2

The variable of interest is age (age in months):

summary(svy$age)

Tables can be difficult to use with ungrouped age data because there are usually many different values:

table(svy$age)

The fullTable() function from the NIPN data-quality toolkit is preferred, as this will include values
with zero counts:

 fullTable(svy$age, values = 6:59)

We used the fullTable() function here because it returns a table containing cells for every value
specified by the values parameter. The returned table will also only contain cells for the values
specified by the values parameter. The default for the values parameter is the range of the variable
being tabulated. This means that the values parameter can be sometimes be omitted:

 fullTable(svy$age)

Omitting the values parameter only works reliably for numeric variables containing whole numbers.
If the variable being tabulated is a character variable or is a numeric variable containing one or more
numbers with decimal places then you should specify the values parameter.

55

A graphical analysis is usually more informative than a tabular analysis:

barplot(fullTable(svy$age, values = 6:59),
xlab = "Age (months)", ylab = "Frequency", las = 3, cex.names = 0.6)

We expect all ages to be present with roughly equal frequency or with frequency reducing slowly with
age due to mortality. We can see that there is marked age-heaping at 12, 18, 24, 30, 36, and 48 months
(see Figure 7.1). This is very common when age is reported by mothers. This is because of a tendency
for mothers and other carers to round ages to whole years or half years.

Note that we used values = 6:59 with the fullTable() function from the NIPN data quality toolkit.
We did this because it is the range of values that should be present in the age variable.

Figure 7.1 Distribution of ages in a SMART survey with age-heaping at whole and half years.

7.2 Age heaping in children

Age heaping can seriously affect survey results for indices that include an age component (e.g. height-
for-age and weight-for age). The effect is important when there is systematic rounding up or
systematic rounding down. Systematic rounding can lead to bias. If rounding is systematically down
then indices will be biased upwards and prevalence biased downwards. If rounding is systematically
up then indices will be biased downwards and prevalence biased upwards.

A useful way of looking at age heaping when age is recorded in months is to examine the remainders
when the ages are divided by 12.

56

The R language provides a special operator (%%) to help with this:

rem <- svy$age %% 12

remTable <- fullTable(rem, values = 0:11)

remTable

prop.table(remTable) * 100

barplot(remTable, xlab = "Age (months) %% 12", ylab = "Frequency")

abline(h = sum(remTable / 12), lty = 3)

chisq.test(remTable)

See Figure 7.2.

Figure 7.2 Remainder of age divided by 12 in a SMART survey with age-heaping at whole and
half years. The dotted line shows expected numbers.

The NIPN data quality toolkit provides an R language function called ageHeaping() that performs
this age-heaping analysis. Applying this function to the example data:

ageHeaping(svy$age)

This returns:

 Age-heaping Analysis

data: Remainder of svy$age / 12
X-squared = 214.9588, df = 11, p-value = 0.0000

57

The output of the ageHeaping() function can be saved for later use:

 ah12 <- ageHeaping(svy$age)

The saved output contains the Chi-squared test and frequency tables of the final digits (counts and
percentages). These can be accessed using:

ah12

ah12$X2

ah12$df

ah12$p

ah12$tab

ah12$pct

The saved results may also be plotted:

plot(ah12, main = "Age-heaping (remainder of age / 12)")

The resulting plot is shown in Figure 7.3.

Figure 7.3 Age heaping at whole and half years in a SMART survey. The dotted line shows
expected numbers.

58

The ageHeaping() function assumes that you want to examine the remainder after dividing by
twelve. This is useful when working with ages that are recorded in months. It may also be useful to use
other divisors, such as examining the remainder after dividing by six:

 ah6 <- ageHeaping(svy$age, divisor = 6)

 print(ah6)

plot(ah6)

This shows the extent of age heaping at whole and half-years (see Figure 7.4).

Figure 7.4 Age heaping at whole and half years in a SMART survey. The dotted line shows
expected numbers.

7.3 Age heaping in adults

Using ten and five as divisors can be useful when dealing with data for adults in which ages are
recorded in whole years.

We will retrieve a survey dataset:

svy <- read.table("ah.ex01.csv", header = TRUE, sep = ",")

head(svy)

The file ah.ex01.csv is a comma-separated-value (CSV) file containing anthropometric data from a
Rapid Assessment Method for Older People (RAM-OP) survey in the Dadaab refugee camp in Garissa,
Kenya. This is a survey of people aged sixty years and older.

59

The variable of interest is age (age in years):

summary(svy$age)

Care should be exercised when specifying the divisor to use in the analysis of age heaping. Not all
calendars use base ten. Amongst Han Chinese, for example, age heaping may occur with a twelve-year
cycle corresponding to preferred animal years in the Chinese calendar. An analysis of age heaping that
concentrates on specific digits (e.g. zero and five) or on decimal intervals will not be appropriate in all
populations. It is advisable, therefore to use simple tabulation and visualisation techniques to heap
data first and then decide on an appropriate divisor.

With the example data:

summary(svy$age)

 fullTable(svy$age)

barplot(fullTable(svy$age),
 xlab = "Age (years)", ylab = "Frequency", las = 3, cex.names = 0.6)

shows age-heaping at decades and half-decades (see Figure 7.5).

Figure 7.5 Age heaping at decades and half-decades in a RAM-OP survey of adults aged 60
years and older.

60

In this survey using a divisor of 10 would be appropriate:

 ah10 <- ageHeaping(svy$age, divisor = 10)

 print(ah10)

 plot(ah10)

There is pronounced age heaping at decades and, to a lesser extent, half-decades in these data (see
Figure 7.6).

Figure 7.6 Age-heaping at decades and half-decades in a RAM-OP survey. The dotted line
shows expected numbers.

It may also be useful to use other divisors, such as examining the remainder after dividing by five:

 ah5 <- ageHeaping(svy$age, divisor = 5)

 print(ah5)

plot(ah5)

This shows the extent of age heaping at whole and half decades (see Figure 7.7).

61

Figure 7.7 Age heaping at whole and half decades in a RAM-OP survey. The dotted line shows
expected numbers.

62

8. Using scatterplots to identify outliers

We can expect anthropometric variables in children to be strongly and positively associated with each
other. This is because children tend to gain both weight and height as they grow. This allows us to use
graphical and numerical methods to identify outliers (i.e. observations that are distant from most
other observations) that may be due to errors.

It is important to note that anthropometric surveys often use a method of comparing observed values
with reference values using a process known as “flagging” to identify and censor outliers. The methods
outlined in this section are intended to complement rather than replace the “flagging” methods
discussed elsewhere.

8.1. Identifying outliers by observation

We will retrieve a survey dataset:

svy <- read.table("sp.ex01.csv", header = TRUE, sep = ",")

head(svy)

The file sp.ex01.csv is a comma-separated-value (CSV) file containing anthropometric data from a
SMART survey from the Democratic Republic of Congo.

We will look at the relationship between height and weight in this dataset:

plot(svy$height, svy$weight)

The resulting plot is shown in Figure 8.1. There is a clear positive linear relationship between height
and weight (i.e. weight increases with increasing height along a straight line). We can assess the
strength of this relationship using the Pearson correlation coefficient:

cor(svy$height, svy$weight, method = "pearson", use = "complete.obs")

which returns:

0.9204116

This is very close to one, which would indicate a perfect positive association. There are, however, a few
points that lie outside of the bulk of the plotted points. These outliers may be due to errors in the data.

The presence of oedema can be associated with increased body weight. This is a particular issue with
severe oedema. An outlier with a high value of weight for a given height could be due to oedema. We
can check this:

plot(svy$height, svy$weight, pch = ifelse(svy$oedema == 1, 19, 1))

The pch = ifelse(svy$oedema == 1, 19, 1) tells the plot() function to plot filled circles for
oedema cases and open circles for children without oedema. The resulting plot is shown in Figure 8.2.
A single high weight for height outlier appears to be due to the presence of oedema.

The other filled circles that are located in the main mass of plotted points show that children with
oedema may have a body weight within the normal range for their height. These children may not be
classified as wasted, but they are suffering from a form of severe acute malnutrition (SAM) known as
kwashiorkor.

63

Figure 8.1. The relationship between height and weight in the example dataset.

Figure 8.2. The relationship between height and weight in children with and without oedema
in the example dataset. The filled circles show children with oedema.

64

Outliers can be identified by eye. The identify() function can help with this:

plot(svy$height, svy$weight, pch = ifelse(svy$oedema == 1, 19, 1))

identify(svy$height, svy$weight)

Clicking on any point will cause the record (row) number associated with each point to be displayed
on the plot (see Figure 8.3). Right-clicking on the plot or pressing the "escape" key will stop
identify().

The behaviour of the identify() function may be different when you use an alternative graphical
user interface for R such as RStudio or R-AnalyticFlow.

Figure 8.3. Outliers identified by eye using the plot() and identify() functions. The
numbered points were identified by eye as outliers (the number corresponds to the record
(row) number in the example dataset). Filled circles show children with oedema.

The identify() function will, by default, display record (row) numbers for the points identified. This
is usually what is needed. Alternative labels can be displayed. For example:

plot(svy$height, svy$weight, pch = ifelse(svy$oedema == 1, 19, 1))

identify(svy$height, svy$weight,
 labels = paste(svy$height, svy$weight, sep = ";"), cex = 0.75)

displays the height and weight values at selected points.

65

The ability to display custom labels is useful if there is a variable (column) in a dataset that contains
unique record identifiers.

It is useful to be able to store the record (row) numbers of identified points:

plot(svy$height, svy$weight, pch = ifelse(svy$oedema == 1, 19, 1))

stored <- identify(svy$height, svy$weight)

If the same points shown in Figure 8.3 are clicked to identify them then:

stored

will return:

1 6 16 62 66

We can examine the data for the identified points:

svy[stored,]

This returns:

 age sex weight height muac oedema
1 54 1 20.5 111.5 180 2
6 48 2 18.6 95.3 171 1
16 30 1 16.9 92.5 188 2
62 55 1 15.1 118.0 156 2
66 56 1 15.0 115.0 148 2

The oedema data is coded 1 for present and 2 for absent.

Data can be checked and edited if needed. Note that record 6 is an oedema case and should probably
not be changed.

If your dataset has many variables (columns) then you may specify only the variables (columns) of
interest:

 svy[stored, c("weight", "height", "oedema")]

This returns:

 weight height oedema
 1 20.5 111.5 2
 6 18.6 95.3 1
16 16.9 92.5 2
62 15.1 118.0 2
66 15.0 115.0 2

66

8.2 Identifying outliers using statistical distance

A more formal method of identifying outliers is to use a measure of the statistical distance. A common
measure that is applied to scatterplot data is the Mahalanobis distance. This treats the bivariate
probability distribution as an ellipsoid. The Mahalanobis distance is the distance of a point from the
centre of mass of the distribution divided by width of the ellipsoid in the direction of the point. This is
shown in Figure 8.4.

 Figure 8.4. A scatterplot of data illustrating the two axes around the centre mass of a

distribution used to calculate the Mahalanobis distance.

In directions in which the ellipsoid has a short axis the test point must be close to the centre of mass of
the distribution. In directions in which the ellipsoid has a long axis the test point may be more distant
from the centre of mass of the distribution.

The NIPN data quality toolkit provides an R language function outliersMD() that uses the
Mahalanobis distance to identify outliers in the same dataset:

svy[outliersMD(svy$height,svy$weight),]

67

This returns the same set of records that was identified by eye:

 age sex weight height muac oedema
1 54 1 20.5 111.5 180 2
6 48 2 18.6 95.3 171 1
16 30 1 16.9 92.5 188 2
62 55 1 15.1 118.0 156 2
66 56 1 15.0 115.0 148 2

Data can be checked and edited if needed. Note that record 6 is an oedema case and should probably
not be changed.

We can use the outliersMD() to identify and display outliers on a scatterplot:

plot(svy$height, svy$weight,
 pch = ifelse(outliersMD(svy$height, svy$weight), 19, 1))

See Figure 8.5.

Figure 8.5. Outliers identified automatically using the Mahalanobis distance method
implemented by the outliersMD() function in the NIPN data quality toolkit. Filled circles
show the outliers identified by the Mahalanobis distance.

The outliersMD() function has an alpha parameter. The default value for the alpha parameter is
alpha = 0.001. This value is used automatically unless another value is specified.

When we use alpha = 0.001 we are looking for records with values so extreme that we would
expect to find them with a probability of 0.001 when there are no problems with the data.

68

We can calculate the number of outliers that we expect to see by chance with alpha = 0.001 using:

 round(nrow(svy) * 0.001)

This returns:

 1

We found five potential outliers. The difference between the number that we expected and the number
that we observed (i.e. one expected vs. five observed) suggests that some of the identified outliers are
true outliers or due to data errors.

Another way of looking at the alpha parameter is that it alters the sensitivity of the outlierMD()
function by altering the threshold distance that is used to define outliers. This can be useful when
using the outlierMD() function with some, but not all, curvilinear relationships (see below).

Larger values of alpha will tend to detect more potential outliers. For example:

plot(svy$height, svy$weight,
pch = ifelse(outliersMD(svy$height, svy$weight, alpha = 0.01), 19, 1))

and:

svy[outliersMD(svy$height,svy$weight, alpha = 0.01),]

See Figure 8.6.

Figure 8.6. Outliers identified automatically by the outliersMD() function with alpha =
0.01. Filled circles show the outliers identified by the Mahalanobis distance.

69

In almost all cases the default alpha = 0.001 will be appropriate.

The techniques outlined above can be used to examine the relationships between other pairs of
anthropometric variables (e.g. weight and muac) and to identify outliers. All sensible pairings of
variables should be examined.

8.3 Anthropometric measurements and age

We also expect anthropometric variables to be associated with age. This relationship is particularly
strong in children. It will be less strong in adults and may be weak or even reversed in older people.

We can explore the relationship between an anthropometric variable and age using the techniques
described above. For example:

plot(svyage, svyheight, pch = ifelse(outliersMD(svyage, svyheight), 19, 1))

svy[outliersMD(svyage, svyheight),]

See Figure 8.7.

There are some problems with this approach. Age is often reported and recorded so that the data
show considerable age heaping (see Section 7). Age is unlikely to be approximately normally
distributed, which is an assumption of the Mahalanobis distance method. The relationship between
anthropometric variables and age usually follows a “growth curve” rather than a straight line.

The combination of age heaping, non-normality, and a curvilinear relationship may reduce the
effectiveness of the Mahalanobis distance method for detecting outliers. It may be useful, in such
cases, to increase the value of the alpha parameter. For example:

plot(svyage, svyheight,
pch = ifelse(outliersMD(svyage, svyheight, alpha = 0.025), 19, 1))

See Figure 8.8.

Outliers can be listed using the same value for alpha:

svy[outliersMD(svyage, svyheight, alpha = 0.025),]

The Mahalanobis distance method is usually robust enough to deal with age data provided an
appropriate value of alpha is used.

70

Figure 8.7. The relationship between age and height in the example dataset showing outliers
identified by the outliersMD() function. Filled circles show the outliers identified by the
Mahalanobis distance.

Figure 8.8. The relationship between age and height in the example dataset showing outliers
identified by the outliersMD() function with alpha = 0.025. Filled circles show the
outliers identified by the Mahalanobis distance.

71

8.4 Difficult relationships for the Mahalanobis distance method

The Mahalanobis distance method works well with pairs of variables as long as the relationship
between the two variables is monotonic (i.e. one variables always increases or always decreases in
value as the other variable increases in value). This is usually the case with anthropometric data.

We will explore the use of the Mahalanobis distance method with data that is not monotonic using
generated data:

x <- c(4, 8, 16, 17, 22, 27, 38, 40, 47, 48, 53, 55, 63, 71, 76, 85, 92, 96)

y <- c(6, 22, 34, 42, 51, 59, 64, 69, 70, 20, 70, 63, 63, 55, 46, 33, 19, 6)

plot(x, y)

There is a clear relationship between x and y but it is not a monotonic relationship (i.e. it is not always
increasing or decreasing). There is a single obvious outlier. See Figure 8.8.

The Mahalanobis distance method will not work well with this data.

This:

plot(x, y, pch = ifelse(outliersMD(x, y), 19, 1))

fails to detect the outlier. Relaxing the alpha parameter:

plot(x, y, pch = ifelse(outliersMD(x, y, alpha = 0.025), 19, 1))

does not help. Relaxing the alpha parameter further:

plot(x, y, pch = ifelse(outliersMD(x, y, alpha = 0.1), 19, 1))

results in false positive results but fails to identify the clear outlier.

All of these plots are shown in Figure 8.9.

72

Figure 8.9. The Mahalanobis distance method fails with non-monotonic relationships. Filled
circles show the outliers identified by the Mahalanobis distance at the specified alpha. Note
that the Mahalanobis distance method fails to identify the clear outlier and falsely identifies
two points as outliers.

Although the Mahalanobis distance cannot be used directly to identify outliers in non-monotonic
relationships, it can be applied to residuals from fitted non-linear models. This technique is unlikely to
be required with anthropometric data and is not covered in this toolkit.

It is very unlikely that you will see non-monotonic relationships with anthropometric data. You are
likely to see “growth curves” that look like this:

set.seed(0)

x <- 0:100

y <- 1 - exp(-x / 50) + rnorm(101, 0, 0.05)

plot(x, y)

lines(x, 1 - exp(-x / 50), lty = 2)

73

See Figure 8.10. This is a monotonic relationship. The Mahalanobis distance method should work well
with this data. If we add a clear outlier:

y[50] <- 0.3

plot(x, y)

this can be detected using the Mahalanobis distance method using a slightly relaxed alpha value:

plot(x, y, pch = ifelse(outliersMD(x, y, alpha = 0.005), 19, 1))

All of these plots are shown in Figure 8.10.

Figure 8.9. The Mahalanobis distance method works with monotonic relationships. The filled
circle shows the outlier identified by the Mahalanobis distance using alpha = 0.005. Note
that the Mahalanobis distance method correctly identifies the clear outlier.

74

8.5 Working with data from children older than 5 years

We will now look at using scatterplots and the Mahalanobis distance methods with data from older
children.

We will retrieve a survey dataset:

svy <- read.table("sp.ex02.csv", header = TRUE, sep = ",")

head(svy)

The file sp.ex02.csv is a comma-separated-value (CSV) file containing anthropometric data from a
survey of school-age (i.e. between 5 and 15 years) children in Pakistan.

We can summarise the dataset using:

 summary(svy)

This returns:

 region school ageMonths sex weight
 Min. :1.000 Min. : 1.00 Min. : 60.0 Min. :1.000 Min. :10.30
 1st Qu.:3.000 1st Qu.: 8.00 1st Qu.: 83.0 1st Qu.:1.000 1st Qu.:17.20
 Median :4.000 Median :15.00 Median : 98.0 Median :1.000 Median :21.30
 Mean :4.491 Mean :15.51 Mean :104.8 Mean :1.397 Mean :22.62
 3rd Qu.:7.000 3rd Qu.:23.00 3rd Qu.:124.0 3rd Qu.:2.000 3rd Qu.:27.00
 Max. :8.000 Max. :30.00 Max. :178.0 Max. :2.000 Max. :51.90

 height haz waz baz
 Min. : 86.2 Min. :-5.730 Min. :-5.350 Min. :-4.7000
 1st Qu.:108.7 1st Qu.:-2.640 1st Qu.:-2.380 1st Qu.:-1.2900
 Median :120.9 Median :-1.790 Median :-1.615 Median :-0.7600
 Mean :121.2 Mean :-1.705 Mean :-1.581 Mean :-0.7758
 3rd Qu.:132.6 3rd Qu.:-0.790 3rd Qu.:-0.805 3rd Qu.:-0.2100
 Max. :164.2 Max. : 3.550 Max. : 3.010 Max. : 1.9900
 NA's :267 NA's :8

The baz variable contains the BMI-for-age z-score calculated from the ageMonths, sex, weight, and
height variables using the WHO growth reference. A key thing to notice in the summary is the large
number of missing values in the waz variable. This is because the weight-for-age z-score is not
calculated for children aged older than 120 months. You can check this using:

 by(svy$ageMonths, is.na(svy$waz), summary)

This gives:

is.na(svy$waz): FALSE
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 60.00 76.00 88.00 88.24 99.00 120.00

is.na(svy$waz): TRUE
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 121.0 125.5 141.0 140.8 151.0 178.0

There appears to be nothing odd about the large number of missing values in the waz variable.

75

We should investigate the missing values in the baz variable:

 svy[is.na(svy$baz),]

This returns:

 region school ageMonths sex weight height haz waz baz
83 1 3 143 2 14.0 125.9 -3.64 NA NA
158 2 6 96 1 12.3 118.4 -1.57 -5.26 NA
275 3 10 77 1 10.3 113.9 -0.88 -5.35 NA
415 4 15 75 1 33.0 108.3 -1.90 3.01 NA
508 5 19 85 2 11.1 111.5 -1.78 -4.84 NA
529 6 20 78 1 12.1 111.9 -1.37 -4.45 NA
761 8 28 62 1 13.3 115.4 0.99 -2.70 NA
806 8 29 100 1 13.2 121.2 -1.36 -5.01 NA

The data required to calculate the BMI-for-age z-score are present. Given the extreme values in the
waz variable it is likely that the BMI-for-age z-scores in these records were calculated, found to be
outside the upper and lower flagging criteria, and the value for baz were set to missing. We should
check this and recalculate the BMI-for-age z-scores.

We can use scatterplots to examine the relationship between ageMonths, weight, and height:

 plot(svy$ageMonths, svy$weight)

 plot(svy$ageMonths, svy$height)

 plot(svy$height, svy$weight)

See Figure 8.11.

These relationships are not as simple as in younger children:

Variability in weight appears to increase with increasing ageMonths.

The relationship between height and ageMonths may not be entirely linear.

The relationship between weight and height is clearly non-linear.

All of these relationships are monotonic (see Figure 8.10) so we should still be able to use the
Mahalanobis distance method to identify outliers:

plot(svy$ageMonths, svy$weight,
 pch = ifelse(outliersMD(svy$ageMonths, svy$weight), 19, 1))

plot(svy$ageMonths, svy$height,
 pch = ifelse(outliersMD(svy$ageMonths, svy$height), 19, 1))

plot(svy$height, svy$weight,
 pch = ifelse(outliersMD(svy$height, svy$weight), 19, 1))

See Figure 8.11. You may want to experiment with different values of the alpha parameter of the
outliersMD() function as described above. Records containing values identified as outliers can be
listed:

 svy[outliersMD(svy$ageMonths, svy$weight),]

 svy[outliersMD(svy$ageMonths, svy$height),]

 svy[outliersMD(svy$weight, svy$height),]

These records can be checked, edited (if required), and anthropometric indices recalculated.

76

Figure 8.11. The relationship between age, height, and weight in the example dataset of school-age
children. The filled circles show the outliers identified by the Mahalanobis distance.

77

9. Identifying outliers using flags

Flagging is a way of identifying records for which there is a strong likelihood that values of
anthropometric measurements or the age of the child are incorrect. Records can then be checked and
corrected, or censored (i.e. excluded), from subsequent analyses.

Flagging is a process of checking whether values of anthropometric indices are outside a given range
and recording the result in one or more new variables. The result may be a set of logical (i.e. 1/0 or
true/false) flag variables (i.e. one flag variable per anthropometric index) or a single variable holding a
code number that classifies the nature of the detected problem(s).

Flagging is usually applied to height-for-age z-scores (HAZ), weight-for-age z-scores (WAZ), weight-
for-height z-scores (WHZ), and BMI-for-age z-scores (BAZ) calculated from data collected during
nutritional anthropometry surveys. The flagging process can be easily applied to other variables.

Two flagging criteria for anthropometric indices are in common use. These are the WHO flagging
criteria and the SMART flagging criteria. Both methods flag records in which one or more
anthropometric indices are more than a certain distance either side of a reference value. The two
methods are summarised in Table 9.1.

Table 9.1. WHO and SMART flagging criteria (SMART, 2012; WHO, 2009; WHO, 2011) applied to the
anthropometric indices of children, with the old criteria applied to the NCHS references.

 WHO SMART NCHS

 Reference mean
(zero)

 Survey mean
(observed)

 Reference mean
(zero)

Anthropometric index

 Lower
limit

Upper
limit

 Lower
limit

Upper
limit

 Lower
limit

Upper
limit

 Weight-for-length -5 +5 -3 +3 -4 +6

Weight-for-height -5 +5 -3 +3 -4 +6

Length-for-age -6 +6 -3 +3 -6 +6

Height-for-age -6 +6 -3 +3 -6 +6

Weight-for-age -6 +5 -3 +3 -6 +6

BMI-for-age -5 +5 NA* NA* -5 +5

MUAC-for-age -5 +5 NA* NA* -5 +5

Triceps-for-age -5 +5 NA* NA* -5 +5

Subscapular skinfold-for-age -5 +5 NA* NA* -5 +5

Head circumference-for-age -5 +5 NA* NA* -5 +5

* NA = not available

Applying flagging criteria is a matter of checking that individual values of these indices are within the
lower and upper limits shown in Table 9.1. Values that are outside of these limits are flagged in a new
variable.

The WHO ranges for the other anthropometric indices (MUAC-for-age, triceps skinfold-for-age,
subscapular skinfold-for-age and head circumference-for-age) are -5 to +5 z-scores. These indices are
calculated by WHO Anthro software but not by ENA for SMART (see Appendix 2).

The WHO criteria are simple biologically plausible ranges around the reference mean of zero. If, for
example, a value for WHZ is below −5 or above +5 then the record is flagged to indicate a likely
problem with WHZ. This will usually be caused by an erroneous value of weight or height.

78

Note that values outside these flagging limits may be observed in children admitted into therapeutic
feeding programmes.

SMART criteria are more complicated. They require the mean value of the index to be calculated from
the survey data. This is then used as the reference value and then 3 z-scores are added or subtracted to
create a range. For example, if a value of WHZ is below:

 mean WHZ − 3

or above:

 mean WHZ + 3

then the record is flagged to indicate a likely problem with WHZ.

For example, a mean WHZ of −1.15 gives lower and upper SMART flagging limits of:

 −1.15 – 3 = −4.15

and:

 −1.15 + 3 = +1.85

respectively. These limits may incorrectly flag biologically plausible values. See Figure 9.1.

Figure 9.1. Example of WHO and SMART flagging criteria for weight-for-height z-scores
(WHZ). WHO flagging criteria are wider for height-for-age z-scores (HAZ) and weight-for-age
z-scores (WAZ) (see Table 9.1)

79

The WHO and SMART flagging criteria will flag different but overlapping sets of measurements. This
means that survey results can be affected by the flagging criteria used. This is because the prevalence
of an indicator describes the proportion of values in the one of the “tails” of the distribution of an index
(see Figure 9.2).

The SMART flagging criteria will usually flag more records than the WHO flagging criteria. This will act
to reduce the estimated prevalence (see Figure 9.2). This will be occur more often when the prevalence
of severe forms of undernutrition is high.

Figure 9.2. Prevalence is in the “tails” of the distribution. The estimated prevalence is shown
for cases defined using −3 z-scores below the reference median (i.e. zero). The red bars show
the cases remaining after “outliers” to the left have been censored. The area covered by the red
bars represents the estimated prevalence after flagged values have been censored. The
estimated prevalence is reported below each plot as p(z < −3).

There are some problems with using the SMART flagging criteria:

1. Flagging is about detecting outlier values. The SMART flagging criteria use distance from the
sample mean, but the value of the mean can be strongly influenced by the presence of outliers.
This could be overcome by, for example, using the median or a trimmed mean instead of the
reference mean. If you do this you will not be using the SMART flagging criteria.

2. SMART flagging criteria are supposed to define outliers using statistically plausible limits. The
underlying principle is that, for a normally distributed variable, we expect 99.87% of all values
to lie within three sample standard deviations of the sample mean. If we exclude records with
values more than three standard deviations from the mean then we would incorrectly flag very
few records (i.e. 0.13% of the total) as problematic. The SMART method assumes that the
distribution of each anthropometric index in a population is always perfectly normal and that
the standard deviation is always exactly one. This assumption is almost always violated. If it is

80

violated then the use of the SMART flagging criteria may lead to records being flagged
inappropriately. There are ways (e.g. transforming data toward normality, using the sample
standard deviation) to avoid this problem but using them would also not be using the SMART
flagging criteria.

3. Wide-area surveys such as MICS and DHS will usually collect data from many populations.

Each population may have different distributions of anthropometric indices and different
prevalence of anthropometric indicators. In this case the mean of the entire survey sample will
not be a suitable reference mean and the assumed standard deviation (i.e. SD = 1) will usually
be too narrow to set limits that define statistical outliers. This will lead to records being
flagged incorrectly. This is illustrated in Figure 9.3. Stratum or district specific means should be
used instead of whole sample means, but this may not solve the problem entirely.

Figure 9.3. Combining populations with different means and similar standard deviations
increases the overall standard deviation and may cause SMART flagging criteria to flag records
inappropriately. Flagged records are shaded red.

81

If SMART flagging criteria have already been applied to data and the flagged records have been
removed from the dataset, then a subsequent application of the SMART flagging criteria will tend to
flag additional records. SMART flagging criteria should, therefore, only be applied to raw data. Do not
apply SMART flagging criteria to data from which flagged records have been removed.

It is important to note that only one set of flagging criteria, either WHO or SMART, should be used at
any one time.

The WHO and SMART flagging criteria are designed to be applied to samples of children measured in
surveys. They should not be applied to samples of severely malnourished or sick children.

Software such as ENA from SMART, EpiInfo, WHO Anthro, WHO AnthroPlus, and scripts or macros for R,
SAS, SPSS, and STATA provided by the WHO (see Appendix 1 for more details) are frequently used to
calculate anthropometric indices from anthropometric data and then apply flagging criteria to the
data. It is quite common to receive data to which flagging criteria have already been applied and
contain one or more flag variables. You may use these flags if you are sure which flagging criteria have
been applied. If you are unsure which flagging criteria have been applied then you should apply your
flagging criteria of choice using one of these software packages or the procedures outlined in this
section. You may also need to recalculate anthropometric indices using WHO reference values if they
were calculated using NCHS, CDC, or local growth references.

9.2 Applying WHO flagging criteria to survey data

For a first exercise, we will apply the WHO flagging criteria to survey data.

We will retrieve a survey dataset:

svy <- read.table("flag.ex01.csv", header = TRUE, sep = ",")

head(svy)

The file flag.ex01.csv is a comma-separated-value (CSV) file containing anthropometric data from a
recent SMART survey in Sudan.

Applying WHO flagging criteria is straightforward. We first create a column that will contain the flag
code and set this to zero (i.e. no flags) for all records:

svy$flag <- 0

 head(svy)

Then we apply the flagging criteria for each index. Here we apply the WHO flagging criteria to the HAZ
index:

svy$flag <- ifelse(!is.na(svy$haz) & (svy$haz < -6 | svy$haz > 6),
svy$flag + 1, svy$flag)

This can be translated as “if HAZ is not missing and HAZ is below -6 or HAZ is above +6 then add 1 to
the flag variable else leave the flag variable unchanged”.

Be careful when using the < comparison operator with negative numbers. Always insert a space
between the < and – characters. R interprets <- as an assignment operator and may produce
unexpected and unwanted results without issuing a warning or error message.

82

Here we apply the WHO flagging criteria to the WHZ index:

svy$flag <- ifelse(!is.na(svy$whz) & (svy$whz < -5 | svy$whz > 5),
 svy$flag + 2, svy$flag)

Here we apply the WHO flagging criteria to the WAZ index:

svy$flag <- ifelse(!is.na(svy$waz) & (svy$waz < -6 | svy$waz > 5),
svy$flag + 4, svy$flag)

Note that each time we apply a flagging criteria we increase the value of the same flagging variable
(svy$flag) by the next power of two when a problem is detected:

We started with zero

Then we added 20 (i.e. 1) if HAZ was out of range.

Then we added 21 (i.e. 2) if WHZ was out of range.

Then we added 22 (i.e. 4) if WAZ was out of range.

If we had another index then we would use 23 (i.e. 8) to flag a problem in that index.

The advantage of using this coding scheme is that it compactly codes all possible combinations of
problems in a single variable (see Table 9.2).

There are a number of flagged records in the example dataset. This:

 table(svy$flag)

returns:

 0 1 2 3 5 6
751 9 12 9 2 3

This table shows the relative frequency of detected problems. See Table 9.2 to find the meaning of each
of the codes and the suggested action.

Table 9.2. Flagging codes for anthropometric indices calculated for children aged 0 - 59
months based on powers of two, and their meanings.

 Problem detected with* . . .

Code HAZ WHZ WAZ Suggested action(s)
0 ○ ○ ○ None
1 ● ○ ○ Check height and age
2 ○ ● ○ Check weight and height
3 ● ● ○ Check height
4 ○ ○ ● Check weight and age
5 ● ○ ● Check age
6 ○ ● ● Check weight
7 ● ● ● Check age, height, and weight

* The indices are height-for age z-score (HAZ), weight-for-height z-score (WHZ) and weight-for-age z-score (WAZ).

83

The number of flagged records can be found using:

table(svy$flag != 0)["TRUE"]

which returns:

 TRUE
 35

The proportion of records that are flagged can be found using:

prop.table(table(svy$flag != 0))["TRUE"]

This returns:

 TRUE
0.04452926

About 4.45% of records are flagged.

Note that missing values are not flagged. It can be useful to check missing values to see if there are
missing component measurements or if a component measurement is out of range for the calculation
of index values (e.g. WAZ is only calculated for children aged ten years or younger). This issue can be
explored by selection and listing. For example:

 svy[is.na(svy$whz), c("weight", "height", "whz")]

This returns:

 weight height whz
8 8.1 NA NA

There is one missing value for whz in record 8.This is due to a missing value for height (shown as NA).
and haz will also be missing. It may be possible to fix this issue if the missing data are available on
paper forms.

Flagging has a dual role:

1. It is a data-checking tool. If you have access to data collection forms you will be often able to
check records and fix data-entry errors.

2. It is a measure of data-quality. Flagged records can indicate problems with measurement,

recording, data-entry, and data-checking. The proportion of flagged records in a dataset
should, ideally, be below 5%. SMART guidelines consider proportions above 7.5% to be
problematic (SMART, 2015). We found that 4.45% of records in the example dataset were
flagged. The data are of acceptable quality.

We can use:

 svy[svy$flag != 0,]

to display the flagged records.

84

This:

 svy[svy$flag != 0, c("psu","child","flag")]

produces a more compact list.

In the example dataset records are identified using a combination of the psu and child variables.

The listed records can be checked and edited (see Table 9.3). Anthropometric indices can then be
recalculated and the flagging process repeated until all records that can be fixed have been fixed.

Records that cannot be fixed can be censored during analysis. Records are usually censored on an
index-by-index basis. For example, an analysis based on WHZ would censor records in which the flag
variable is 2, 3, 6, or 7.

Table 9.3 shows censoring rules for each index:

Table 9.3. Censoring rules for each anthropometric index

Analysis uses* . . . Censor if flag code is . . .
HAZ 1, 3, 5, or 7
WHZ 2, 3, 6, or 7
WAZ 4, 5, 6, or 7

* The indices are height-for age z-score (HAZ), weight-for-height z-score (WHZ) and weight-for-age z-score (WAZ).

You should be very careful when applying censoring rules. An analysis of prevalence using WHZ, for
example, will usually include children with oedema because a commonly used case-definition for acute
malnutrition is:

 WHZ < -2 or bilateral pitting oedema

If you want to use case-definitions that include oedema then you should be careful not to exclude
children with oedema when censoring flagged records. For an analysis using WAZ you might want to
exclude oedema cases.

9.3 Applying SMART flagging criteria to survey data

In the next exercise we will apply SMART flagging criteria to the same survey dataset.

We will retrieve the survey dataset:

svy <- read.table("flag.ex01.csv", header = TRUE, sep = ",")

head(svy)

and create a column that will contain the flag code and set this to zero (i.e. no flags) for all records:

svy$flag <- 0

Applying SMART flagging criteria requires us to first calculate a mean index value:

meanHAZ <- mean(svy$haz, na.rm = TRUE)

85

meanHAZ

and then to use this mean value to define flagging ranges:

 svy$flag <- ifelse(!is.na(svy$haz) &

(svy$haz < (meanHAZ - 3) | svy$haz > (meanHAZ + 3)),
svy$flag + 1, svy$flag)

We do this for each index:

meanWHZ <- mean(svy$whz, na.rm = TRUE)

svy$flag <- ifelse(!is.na(svy$whz) &
(svy$whz < (meanWHZ - 3) | svy$whz > (meanWHZ + 3)),
 svy$flag + 2, svy$flag)

meanWAZ <- mean(svy$waz, na.rm = TRUE)

svy$flag <- ifelse(!is.na(svy$waz) &
(svy$waz < (meanWAZ - 3) | svy$waz > (meanWAZ + 3)),

svy$flag + 4, svy$flag)

There are a number of flagged records in the example dataset.

This:

 table(svy$flag)

returns:

 0 1 2 3 4 5 6 7
660 59 11 16 1 19 16 4

This table shows the relative frequency of detected problems. See Table 9.2 to find the meaning of each
of the codes. The number of flagged records can be found using:

table(svy$flag != 0)["TRUE"]

which returns:

 TRUE
 126

The proportion of records that are flagged can be found using:

prop.table(table(svy$flag != 0))["TRUE"]

which returns:

 TRUE
0.1603053

About 16% of records are flagged. This is a very high proportion of records flagged.

Note how the SMART flagging criteria identify considerably more records (126 records flagged) than
the WHO flagging criteria (35 records flagged). In this example the SMART flagging criteria flagged 91
biologically plausible records.

We can list flagged records using:

86

 svy[svy$flag != 0,]

The listed records can be checked and edited (see Table 9.2). Anthropometric indices can then be
recalculated and the flagging process repeated until all records that can be fixed have been fixed.

When listing records or displaying very large tables you may see a message like this:

 [reached getOption("max.print") -- omitted 43 rows]

The max.print option sets a limit on the length of information that can be displayed by a single
command. You can alter this behaviour using:

 options(max.print = 99999)

9.4 Flagging data from older children

The process of flagging anthropometric indices in older children is very similar to that used with
younger children.

We will retrieve a survey dataset:

svy <- read.table("flag.ex02.csv", header = TRUE, sep = ",")

head(svy)

The file flag.ex02.csv is a comma-separated-value (CSV) file containing anthropometric data from a
survey of children aged 11 year or older and attending school in Ethiopia.

The variables of interest are height-for-age z-score (haz) and BMI-for-age z-score (baz). We will apply
the WHO flagging criteria (see Table 9.1) to these variables:

svy$flag <- 0

svy$flag <- ifelse(!is.na(svy$haz) & (svy$haz < -6 | svy$haz > 6),
 svy$flag + 1, svy$flag)

svy$flag <- ifelse(!is.na(svy$baz) & (svy$baz < -5 | svy$baz > 5),
svy$flag + 2, svy$flag)

Note that we do not usually apply SMART flagging criteria to older children (i.e. > 59 months).

The coding of the flag variable is shown in Table 9.4.

Table 9.4. Flagging codes for anthropometric indices calculated for children aged 5 to 19 years
based on powers of two, and their meanings.

 Problem with* . . .

Code HAZ BAZ Suggested action(s)
0 ○ ○ None
1 ● ○ Check height and age
2 ○ ● Check weight, height and age
3 ● ● Check weight, height and age

* The indices are height-for age z-score (HAZ) and BMI-for-age z-score (BAZ).

87

This:

 table(svy$flag)

returns:

 0 1 2
 960 2 11

This table shows the relative frequency of detected problems. See Table 9.4 to find the meaning of each
of the codes. The number of flagged records can be found using:

table(svy$flag != 0)["TRUE"]

which returns:

 TRUE
 13

The proportion of records that are flagged can be found using:

prop.table(table(svy$flag != 0))["TRUE"]

which returns:

 TRUE
 0.01336074

About 1.3% of records are flagged. This is an acceptably low proportion of records flagged.

We can list flagged records using:

 svy[svy$flag != 0,]

The listed records can be checked and edited (see Table 9.4). Anthropometric indices can then be
recalculated and the flagging process repeated until all records that can be fixed have been fixed.

9.5 Applying SMART flagging criteria to national survey data

Now we will look at flagging records in large national survey using the SMART flagging criteria.

We will retrieve a dataset.

svy <- read.table("flag.ex03.csv", header = TRUE, sep = ",")

head(svy)

The file flag.ex03.csv is a comma-separated-value (CSV) file containing anthropometric data from a
national survey in Nigeria.

The data were collected using methods similar to MICS and DHS surveys. The only difference is that
the survey concentrated on collecting anthropometric data for children aged between 6 and 59
months.

88

Data are stratified by region and by state within region:

table(svy$region)

table(svy$state)

In this exercise we will concentrate on WHZ.

SMART flagging criteria use the sample mean as the reference value (see Table 9.1).

The overall mean WHZ:

 mean(svy$whz, na.rm = TRUE)

is:
 -0.4555963

We can examine mean WHZ by region:

by(svywhz, svyregion, mean, na.rm = TRUE)

This returns:

svy$region: NC
[1] -0.2581365

svy$region: NE
[1] -0.6218837

svy$region: NW
[1] -0.5656509

svy$region: SE
[1] -0.364248

svy$region: SS
[1] -0.2675344

svy$region: SW
[1] -0.4835342

The mean WHZ varies between regions.

We can examine the mean WHZ by region and state.

First we will create a new variable that combines region and state:

svy$regionState <- paste(svy$region, svy$state, sep = ":")

head(svy)

table(svy$regionState)

We can now examine the mean WHZ for each combination of region and state in the survey dataset:

by(svywhz, svyregionState, mean, na.rm = TRUE)

89

The long output can be made more compact, easier to read, and easier to work with:

means <- by(svywhz, svyregionState, mean, na.rm = TRUE)

means <- means[1:length(means)]

means

The saved means object can be examined:

summary(means)

hist(means)

The mean WHZ varies between regions and between states within each region.

This is not a problem if we want to use WHO flagging criteria. We can simply apply the WHO flagging
criteria to the whole dataset.

If we want to use SMART flagging criteria with these data then we will need to decide which mean to
use as the reference mean. The most useful reference mean will usually be the one for the smallest
spatial strata. This is state in the example data. This is not ideal as states are very large areas and
may contain different ethnic groups and livelihood zones. It is the best that we can do.

The process of applying SMART flagging criteria to a national or wide area survey is shown in
Flowchart 9.1.

Flowchart 9.1. Applying SMART flagging criteria in national or wide area survey

90

When dealing with national surveys we will usually want to use the WHO flagging criteria.

In some cases we may need to use the SMART flagging criteria.

The NIPN data quality toolkit provides an R language function called national.SMART() that
simplifies the process of applying SMART flagging criteria to wide area surveys.

The national.SMART() function has three parameters shown in Table 9.5.

Table 9.5. The parameters used by the national.SMART() function in the NIPN
anthropometry toolkit.

Parameter Contents
Value for the example

survey dataset
Notes

x

Survey dataset svy An R data.frame object

strata

The column in the
survey dataset for the
smallest spatial strata.

"state" Quotes are needed.

indices

Variable names for the
indices to be included in

the flagging process.
c("haz", "whz", "waz")

Quotes are needed.

The default value is as in
the example. Change this

to reflect indices and
their column names.

Coding increases by

powers of two.

The national.SMART() function returns a copy of the survey dataset (x) with SMART flags added in
a column names flagSMART.

We will use the national.SMART() function with the example data:

svyFlagged <- national.SMART(x = svy, strata = "state")

Examining the results:

table(svyFlagged$flagSMART)

table(svyFlagged$flagSMART != 0)

prop.table(table(svyFlagged$flagSMART != 0))

prop.table(table(svyFlagged$flagSMART != 0))["TRUE"]

svyFlagged[svyFlagged$flagSMART != 0,]

A more compact list of flagged records can be produced using:

 subset(svyFlagged, subset = (svyFlagged$flagSMART != 0),
 select = c(psu, regionState, age:height, flagSMART))

91

We can use the write.table() function to save the data with flags to a file for later analysis in R or in
a statistics package:

write.table(svyFlagged, file = "svyFlagged.csv", sep = ",",
quote = FALSE, row.names = FALSE)

92

10. Assessing the distribution of anthropometric variables, indices, and indicators

In this section we will examine the distribution of anthropometric variables (e.g. weight, height, and
MUAC), anthropometric indices (e.g. WHZ, HAZ, and WHZ), and anthropometric indicators (e.g.
wasted, stunted, and underweight).

Topics such as the distribution of age, age by sex, age-heaping, and digit preference are covered in
other sections of this toolkit.

10.1 Numerical summaries

We will retrieve a survey dataset:

svy <- read.table("dist.ex01.csv", header = TRUE, sep = ",")

head(svy)

The file dist.ex01.csv is a comma-separated-value (CSV) file containing anthropometric data from a
SMART survey in Kabul, Afghanistan.

The summary() function in R provides a six-figure summary (i.e. minimum, first quartile, median,
means, third quartile, and maximum) of a numeric variable. For example:

summary(svy$weight)

returns:

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.90 9.00 11.00 11.13 13.10 20.70

The six-figure summary does not report the standard deviation.

The sd() function in R calculates the standard deviation. For example:

sd(svy$weight)

returns:

2.802065

The sd() function may return NA. This will happen if there are missing values in the specified variable.

If this happens you can instruct the function to ignore missing values:

sd(svy$weight, na.rm = TRUE)

returns the same value:

2.802065

Using the na.rm parameter in this way (i.e. specifying na.rm = TRUE) works with many descriptive
functions in R (see Table 10.1).

93

Table 10.1 : Some descriptive functions in R.

Function* Returns

mean() Mean of the specified variable

sd() Standard deviation of the specified variable

var() Variance of the specified variable

median() Median of the specified variable

min() Minimum of the specified variable

max() Maximum of the specified variable

range() Range of the specified variable

IQR() Interquartile range of the specified variable

quantile() Quantiles of the specified variable

summary() Six-figure summary of the specified variable

mad() Adjusted median absolute deviation

length() Number of observations in the specified variable

nrow() Number of rows in a data.frame (dataset)

* If a function returns NA this may be because the variable contains missing values.
Use na.rm = TRUE to instruct the function to ignore missing values.

10.2 Graphical and numerical summaries

Numerical summaries are useful for checking that data are within an expected range.

Graphical methods are often more informative than numerical summaries.

A key graphical method for examining the distribution of a variable is the histogram.

For example:

hist(svy$weight)

displays a histogram of the weight variable in the example dataset (see Figure 10.1).

We need to be careful when examining the distribution of measurements, as they may vary by sex.

For example:

hist(svy$height)

will display the heights of both males and females. That is, it will display two separate distributions as
if they were a single distribution.

94

Figure 10.1 A histogram showing the distribution of the weight variable in the example dataset

In this case it is sensible to look at the data for males and the data for females using separate
histograms:

hist(svy$height[svy$sex == 1])

hist(svy$height[svy$sex == 2])

or using a box-plot:

boxplot(svy$height ~ svy$sex, names = c("M", "F"),
xlab = "Sex", ylab = "Height (cm)", main = "Height by sex")

Numerical summaries can also be used:

 by(svy$height, svy$sex, summary)

This returns:

 svy$sex: 1
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 56.20 75.00 81.95 82.49 90.00 110.50

 svy$sex: 2
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 58.00 73.25 80.30 81.30 88.95 109.50

All of the above plots are shown in Figure 10.2.

95

Figure 10.2 Histograms and a box-plot of the height variable in the example dataset

10.3 Normal distributions

With anthropometric variables and indices we usually expect a symmetrical (or nearly symmetrical)
“bell-shaped” distribution. The variables and indices of interest are usually:

hist(svy$muac)

hist(svy$haz)

hist(svy$waz)

hist(svy$whz)

These plots are shown in Figure 10.3.

96

Figure 10.3 : Histograms showing the distribution of anthropometric indices in the example dataset

The number and size of the “intervals” (breaks) used when plotting a histogram is calculated to
produce a useful plot. The intervals used are based on the range of the data.

You can specify a different set of breaks for the hist() function to use. For example:

 hist(svy$haz, breaks = "scott")

calculates intervals using the standard deviation and the sample size. This:

 hist(svy$haz, breaks = "FD")

calculates intervals using the inter-quartile range. This:

 hist(svy$haz, breaks = 40)

will use about 40 intervals. This:

 hist(svy$haz, breaks =
 seq(from = floor(min(svy$haz)), to = ceiling(max(svy$haz)), by = 0.5))

97

uses intervals that are 0.5 z-scores wide over the full range of haz.

All of these plots show nearly symmetrical “bell-shaped” distributions.

The ideal symmetrical "bell-shaped" distribution is the normal distribution.

There are a number of ways of assessing whether a variable is normally distributed.

The first way of assessing whether a variable is normally distributed is a simple “by-eye” assessment
as we have already done using histograms.

The NIPN data quality toolkit provides an R language function called histNormal() that can help with
“by-eye” assessments by superimposing a normal curve on a histogram of the variable of interest:

histNormal(svy$muac)

histNormal(svy$haz)

histNormal(svy$waz)

histNormal(svy$whz)

These plots are shown in Figure 10.4. All variables appear to be approximately normally distributed.

Figure 10.4 : Histograms of anthropometric indices with Normal curves superimposed

98

Changing the breaks parameter may make a histogram easier to “read”. For example:

histNormal(svy$haz, breaks = 15)

Another graphical method for assessing whether a variable is normally distributed is the normal
quantile-quantile plot. These are easy to produce using R.

The NIPN data quality toolkit provided a helper function called qqNormalPlot() that produces a
slightly enhanced normal quantile-quantile plot:

qqNormalPlot(svy$whz)

This plot is shown (with annotations) in Figure 10.5. In this example the tails of the distribution
contain more cases than would be expected in a perfectly normally distributed variable.

Figure 10.5 : Annotated normal quantile-quantile plot of the whz variable in the example dataset

99

We should examine all of the relevant variables:

qqNormalPlot(svy$muac)

qqNormalPlot(svy$haz)

qqNormalPlot(svy$waz)

qqNormalPlot(svy$whz)

These plots are shown in Figure 10.6. There is evidence of small deviations from normality in muac,
haz, and whz.

Figure 10.6 Normal quantile-quantile plots of anthropometric indices in the example dataset

A final way of assessing normality is to use a formal statistical significance test. The preferred test is
the Shapiro-Wilk test of normality:

shapiro.test(svy$muac)

shapiro.test(svy$haz)

shapiro.test(svy$waz)

shapiro.test(svy$whz)

These tests indicate that muac, haz, and whz are significantly non-normal. Examination of the
histograms and the normal quantile-quantile plots show that the deviation from normality in these
indices are not particular marked. All indices have symmetrical, or nearly symmetrical, “bell-shaped”
distributions.

100

We need to be careful when using significance tests such as the Shapiro-Wilk test of normality because
the results can be strongly influenced by the sample size.

Small sample sizes can lead to tests missing large effects and large sample sizes can lead to tests
identifying small effects as highly significant.

The analysis above found some highly significant but small deviations from normality that would
probably not have been detected by a significance test if a smaller sample size had been used.

We can simulate a considerably smaller sample size by taking, for example, every fourth muac value:

 length(svy$muac)

 oneQuarter <- svy$muac[seq(from = 1, to = length(svy$muac), by = 4)]

 length(oneQuarter)

Inspecting this smaller sample graphically:

 histNormal(oneQuarter)

 qqNormalPlot(oneQuarter)

yields results similar to those found when the complete sample was used, but the formal test:

 shapiro.test(oneQuarter)

is no longer significant at p < 0.05.

If a distribution appears to be normal (i.e. has a symmetrical, or nearly symmetrical, “bell-shaped”
distribution) then it is usually safe to assume normality and to use statistical procedures that assume
normality. Formal tests for normality can be misleading when sample sizes of more than a few
hundred cases are used. Graphical methods are not very useful when sample sizes are small. Formal
test are not very useful when sample sizes are large. The sample sizes of most anthropometry surveys
will be large enough to cause formal tests for normality to identify small deviations from normality as
highly significant.

10.4 Skew and kurtosis

Skew is a measure of the asymmetry of a distribution about its mean. Skew can be zero, positive, or
negative. Zero skew is found when the distribution is perfectly symmetrical. Positive skew is found
when there is a long right tail to the distribution and the mass of the distribution is concentrated to the
left. Negative skew is found when there is a long left tail to the distribution and the mass of the
distribution is concentrated to the right. We can usually see skew in histograms. We can also calculate
a skewness statistic and test if this is significantly different from zero.

Kurtosis is a measure of how much a distribution is concentrated about the mean. Kurtosis can be
zero, positive, or negative. Zero kurtosis is found when a variable is normally distributed. Positive
kurtosis is found when the mass of the distribution is concentrated about the mean and there are very
few values far from the mean. Negative kurtosis is found when the mass of the distribution is
concentrated in the tails of the distribution. We can usually see kurtosis in histograms. We can also
calculate a kurtosis statistic and test if this is significantly different from zero.

101

The NIPN data quality toolkit provides an R language function called skewKurt() that calculates
skewness and kurtosis statistics and tests whether they differ significantly from zero. Here we apply
the skewKurt() function to the muac variable in the example dataset:

 skewKurt(svy$muac)

This returns:

 Skewness and kurtosis

 Skewness = +0.0525 SE = 0.0828 z = 0.6348 p = 0.5256
 Kurtosis = -0.2412 SE = 0.1653 z = 1.4586 p = 0.1447

There is positive skew and negative kurtosis. Neither is significantly different from zero.

Applying the skewKurt() function to the haz variable in the example dataset:

 skewKurt(svy$haz)

returns:

 Skewness and kurtosis

 Skewness = +0.3074 SE = 0.0828 z = 3.7149 p = 0.0002
 Kurtosis = +0.2074 SE = 0.1653 z = 1.2545 p = 0.2097

There is a positive skew and a positive kurtosis. The skew is significantly different from zero. The
skew can be seen in the histogram:

 histNormal(svy$haz, breaks = "scott")

Applying the skewKurt() function to the waz variable in the example dataset:

 skewKurt(svy$waz)

returns:
 Skewness and kurtosis

 Skewness = -0.0128 SE = 0.0828 z = 0.1541 p = 0.8775
 Kurtosis = +0.1805 SE = 0.1653 z = 1.0919 p = 0.2749

There is negative skew and positive kurtosis. Neither is significantly different from zero.

Applying the skewKurt() function to the whz variable in the example dataset:

 skewKurt(svy$whz)

returns:

 Skewness and kurtosis

Skewness = +0.0823 SE = 0.0828 z = 0.9946 p = 0.3199
Kurtosis = +0.7528 SE = 0.1653 z = 4.5530 p = 0.0000

There is a positive skew and a positive kurtosis. The kurtosis is significantly different from zero. The
kurtosis can be seen on the histogram:

 histNormal(svy$whz, breaks = "scott")

102

as the tall central columns that exceed the expected values shown by the overlaid normal distribution.

Skew and kurtosis are both used in SMART plausibility checks. Table 10.2 shows how skew and
kurtosis statistics are applied by SMART.

Table 10.2 : The range of absolute values of skewness and kurtosis
statistics and they are applied by SMART (2015).

Absolute value*
of skewness / kurtosis

SMART
interpretation

< 0.2 Excellent

≥ 0.2 and < 0.4 Good

≥ 0.6 and < 0.6 Acceptable

≥ 0.6 Problematic

* This is the value of a number ignoring its negative or positive sign.
The absolute value of -0.2412 is 0.2412. The absolute value of +0.2412 is also 0.2412.

The whz variable in the example dataset is considered “problematic” according to this scheme because
kurtosis is above 0.6.

Care should be exercised when using statistical significance tests to classify data as “problematic”. The
use of thresholds and ranges for skew and kurtosis statistics is usually a better approach than relying
on tests of statistical significance. Significance tests can be strongly affected by sample size. Small
sample sizes can lead to tests missing large effects and large sample sizes can lead to tests identifying
small effects as highly significant. If a distribution appears to be normal (i.e. has a symmetrical, or
nearly symmetrical, “bell-shaped” distribution) then it is usually safe to assume normality and to use
statistical procedures that assume normality.

It is important to remember that the normal distribution is a mathematical abstraction. There is
nothing to compel the real world to conform to the normal distribution. The normal distribution has
become reified:

Everyone is sure of this [the normal distribution] … experimentalists believe that it is a
mathematical theorem, and the mathematicians that it is an experimentally determined fact.

Henri Poincaré, Calcul des Probabilités (1912)

The data we see may be representative of reality even when it fails a test for normality.

Tests for normality are useful when selecting statistical methods that rely on normality. They are less
useful for determining data quality. If data follows a symmetrical, or nearly symmetrical, “bell-shaped”
distribution then it will usually safe to use.

10.5 Deviation from normality

Some anthropometric survey methods (e.g. SMART) use deviations from perfect normality as an
indicator of poor data quality. But deviations from normality are not necessarily due to poor quality
data; they can be due to sampling a mixed population. This is easy to demonstrate with some
simulated data.

103

We will assume that we have a population consisting of two groups:

Group 1 : 75% of the population, mean = -0.48, sd = 0.87

Group 2 : 25% of the population, mean = -1.04, sd = 1.10

and that we take a sample size = 1000 from the whole population.

We can simulate this:

set.seed(0)

g1 <- rnorm(n = 750, mean = -0.48, sd = 0.87)

g2 <- rnorm(n = 250, mean = -1.04, sd = 1.11)

g1g2 <- c(g1, g2)

The distributions in the two subgroups (g1 and g2) are both normally distributed:

histNormal(g1)

qqNormalPlot(g1)

shapiro.test(g1)

skewKurt(g1)

histNormal(g2)

qqNormalPlot(g2)

shapiro.test(g2)

skewKurt(g2)

but the distribution in the entire sample (g1g2) is not normal:

histNormal(g1g2)

qqNormalPlot(g1g2)

shapiro.test(g1g2)

skewKurt(g1g2)

The Shapiro-Wilk test of normality returns:

 Shapiro-Wilk normality test

data: g1g2
W = 0.99671, p-value = 0.03514

There is statistically significant negative skew:

 Skewness and kurtosis

 Skewness = -0.1767 SE = 0.0773 z = 2.2851 p = 0.0223
 Kurtosis = +0.2894 SE = 0.1545 z = 1.8728 p = 0.0611

104

There is, however, nothing wrong with the sample or with the data

The distribution in the entire sample (g1g2) is called a “mixture of Gaussians” (the term “Gaussian”
refers to the normal distribution in this context).

We can see this mixture of Gaussians with:

 hist(g1, col=rgb(0.2, 0.2, 0.2, 0.5),
 breaks = seq(-5, 3, 0.5), xlab = "", main = "")

 hist(g2, col=rgb(0.8, 0.8, 0.8, 0.5), breaks = seq(-5, 3, 0.5), add = TRUE)

 title(main = "Histogram of g1 and g2", xlab = "z-score")

See Figure 10.7. In this case the mixture was already known. There are a number of methods for
revealing the underlying mixture when the components of the mixture are unknown. These techniques
are not covered in this toolkit.

Figure 10.7 : Example mixture of two normal distributions yielding a non-normal distribution.
Dark grey is used to represent g1, light grey is used to represent g2, and middle grey is used to
represent the overlap of g1 and g2.

105

We will continue with an example in which the components of the mixture are suspected.

We will retrieve a survey dataset:

 svy <- read.table("dist.ex02.csv", header = TRUE, sep = ",")

 head(svy)

Twelve communities from a district of Somalia were selected for nutritional anthropometry
assessment using a stratified random selection process.

Four communities were selected at random from each of the three rural livelihood zones (i.e. agro-
pastoral, pastoral, and riverine agrarian) in the rural areas of the district:

 table(svy$zone)

The zone column is coded:

1 = Agro-pastoral

2 = Pastoral

3 = Riverine agrarian

Data were collected by three teams assisted by local guides provided by community leaders. Sampling
proceeded on a door-to-door (census) basis and data were collected for all eligible children present in
the community on the day of the survey. Eligible children were defined as being between sixty five
centimetres in length and one hundred and ten centimetres in height.

We will examine the distribution of weight-for-height z-scores:

 histNormal(svy$whz)

The distribution of whz looks reasonably normal with a slight positive skew:

 qqNormalPlot(svy$whz)

 skewKurt(svy$whz)

The Shapiro-Wilk test of normality:

 shapiro.test(svy$whz)

returns:

 Shapiro-Wilk normality test

 data: svy$whz
 W = 0.99621, p-value = 0.03094

This suggests that there is some deviation from normality.

We may suspect that there is a mixture of Gaussians (i.e. from the different livelihood zones). We can
examine this by looking at the distribution of whz in each of the three populations:

 by(svywhz, svyzone, summary)

106

This returns:

 svy$zone: 1
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -3.520 -1.667 -1.170 -1.142 -0.605 1.470

 svy$zone: 2
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -3.610 -1.860 -1.350 -1.319 -0.860 1.040

 svy$zone: 3
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -3.1300 -1.4750 -0.9100 -0.8532 -0.3450 1.8500

An equivalent graphical analysis is:

 boxplot(svy$whz ~ svy$zone, notch = TRUE)

This plot is shown in Figure 10.8. The notches around the medians for each box in the box plot
represent approximate 95% confidence intervals for the medians. If the notches do not overlap then
there is strong evidence that the medians of the distributions differ from each other. This looks to be
the case in Figure 10.8.

Figure 10.8 Distribution of weight-for-height z-scores in children measured in
three rural livelihood zones

Livelihood zone is coded 1 = Agro-pastoral, 2 = Pastoral, 3 = Riverine agrarian.

The boxes in each plot extend between the upper and lower quartiles with the thick line in the box marking the position of
the median. The whiskers extend to 1.5 times the interquartile distance above and below the upper and lower quartiles, and
the isolated points mark data points outside of the range of values covered by the whiskers. The notches around the medians
for each box represent approximate 95% confidence intervals for the medians. If the notches do not overlap then there is
strong evidence that the medians of the distributions differ from each other.

107

We can examine the three whz distributions for normality:

 by(svywhz, svyzone, skewKurt)

 by(svywhz, svyzone, shapiro.test)

Each of the three whz distributions appear to be normally distributed.

Since we have three normal distributions we can test for differences using one-way analysis of variance
(ANOVA):

 aovTest <- aov(svy$whz ~ as.factor(svy$zone))

 summary(aovTest)

This returns:
 Df Sum Sq Mean Sq F value Pr(>F)
 as.factor(svy$zone) 2 24.3 12.164 18.09 2e-08 ***
 Residuals 880 591.7 0.672

There are statistically significant differences between the means of the three distributions.

We can further examine the differences using the TukeyHSD() function:

 TukeyHSD(aovTest)

This returns:

 diff lwr upr p adj
 2-1 -0.1763167 -0.3274578 -0.02517566 0.0172882
 3-1 0.2891166 0.1226730 0.45556035 0.0001465
 3-2 0.4654334 0.2833653 0.64750143 0.0000000

The first item on each row of the output refers to the comparison being made. The row labelled 2-1 ,
for example, tells us that the results presented on that row relate to the mean whz in livelihood zones 1
and 2 (i.e. the agro-pastoral and pastoral livelihood zones). The difference between the two means is
labelled diff and lower (lwr) and upper (upr) 95% confidence limits for the difference between the
two means (diff) are given. The observed significance (p adj) is adjusted for multiple comparisons.

All three whz distributions are differences from each other. We can see this graphically using:

 plot(TukeyHSD(aovTest))

In this example survey we found a mixture of Gaussians. This was suspected prior to data being
collected and was the reason for the stratified sample design. You may be able to perform a similar
analysis with SMART type surveys if, for example, you are able to assign primary sampling units
(PSUs) to livelihood zones. Such an analysis may have limited power if SMART flagging criteria have
been applied and flagged records have been removed. Analyses by wealth group, for example, will
require the relevant data to be collected and recorded in the survey dataset and may be possible with
MICS and DHS data.

We expect to see small deviations from normality in most survey datasets. This will often be the case
when a survey takes a sample of subjects over a wide area covering, for example, several agro-
ecological zones, socio-economic groups, or ethnic groups. This will almost always be the case,
particularly with large surveys such as DHS, MICS, and national SMART surveys.

Another reason for non-normality is that one (or more) of the survey teams has a systematic bias in
making a measurement. Identifying the “offending” survey team by examining and testing for

108

normality separately in all combinations of data from n – 1 survey teams can be attempted. If (e.g.)
there were three teams then we would need to separately test data from:

Team 1 and Team 2 (Team 3 excluded)

Team 1 and Team 3 (Team 2 excluded)

Team 2 and Team 3 (Team 1 excluded)

to see if the deviation from normality disappears when a particular team’s data are excluded. There is,
however, a problem with this type of analysis. In cluster-sampled surveys, teams often sample
adjacent primary sampling units (clusters). When this occurs the “exclude one team” analysis cannot
distinguish between differences due to spatial heterogeneity (i.e. patchiness) and differences due to a
team having a systematic measurement bias.

10.6 The standard deviation and alternatives

The standard deviation is sometimes considered to be useful measure of data quality when applied to
z-scores.

We will use the sd() function to calculate the standard deviation of whz in the Kabul data:

svy <- read.table("dist.ex01.csv", header = TRUE, sep = ",")

sd(svy$whz)

This returns:

1.323469

This may produce misleading values if applied to raw data. This procedure should only be applied to
cleaned data from which erroneous data and flagged records have been censored.

SMART data quality guidelines (SMART, 2015) state that the acceptable range for the standard
deviation of the weight-for-height z-scores (whz) is 0.8 to 1.2 when SMART flagging criteria have been
applied and flagged records have been censored. Standard deviations outside this range are
considered to indicate poor survey quality. Note that SMART does not define thresholds for
anthropometric indices other than for weight-for-height z-scores. It is important to note that a
standard deviation above 1.2 may be due to sampling from a mixed population rather than due to poor
data quality.

The flag column in the example dataset contains a flagging code in which the codes 2, 3, 6, or 7
indicate potential problems with weight and / or height. We should calculate the standard deviation of
the whz variable using only the data in which records with these flagging codes have been censored
and there is no oedema recorded:

sd(svy$whz[!(svy$flag %in% c(2, 3, 6, 7) | svy$oedema == 1)])

The ! character specifies a logical “not”. The standard deviation is, therefore, calculated using records
in which the flag variable does not contain 2, 3, 6, or 7 and oedema is not recorded as being present.

 The standard deviation for whz when flagged records and oedema cases are censored is:

1.141944

This is within the SMART acceptable range of 0.8 to 1.2.

109

The problem with using the standard deviation with raw data is that it is a non-robust statistic. This
means that it can be strongly influenced by outliers. For example:

 sd(c(4.55, 5.93, 2.68, 5.61, 3.53, 4.78, 3.60, 5.82, 4.41, 5.42))

returns:

1.097533

Adding a single outlier (e.g. data entered as 7.84 rather than as 4.78):

sd(c(4.55, 5.93, 2.68, 5.61, 3.53, 7.84, 3.60, 5.82, 4.41, 5.42))

This returns:

 1.496963

In this example a single outlier has strongly influenced the standard deviation.

There are a number of robust estimators for the standard deviation. R provides the mad() function to
calculate an adjusted median absolute deviation (MAD).

The median absolute deviation (MAD) is defined as the median of the absolute deviations from the
median. It is the median of the absolute values of the differences between the individual data points
and the median of the data:

The calculated MAD is adjusted to make it consistent with the standard deviation:

where k is a constant scaling factor, which depends upon the distribution. For the normal distribution:

The mad() function in R returns the adjusted MAD:

This is a robust estimate of the standard deviation.

This estimator is preferred when a sample is taken from a mixed population (this is almost always the
case) and when the distribution has “fat” or “heavy” tails, as is the case with the whz variable in the
example dataset.

Using the mad() function with the raw WHZ data:

mad(svy$whz)

This returns:

1.156428

110

We would usually want to calculate the adjusted MAD of the whz variable using only the data in which
records with flagging codes relevant to whz and cases of oedema are censored:

mad(svy$whz[!(svy$flag %in% c(2, 3, 6, 7) | svy$oedema == 1)])

This returns:

 1.097124

The use of the standard deviation and robust equivalents such as the adjusted MAD with simple
thresholds is problematic. Data that is a mixture of Gaussians distributions will tend to have large
standard deviations even when there is no systematic error and nothing is wrong with the sample.
Checks on the standard deviation in large surveys should, therefore, be performed on the smallest
spatial strata above the PSU or cluster level. This reduces but does not eliminate the problem of
sampling from mixed populations.

We will retrieve a dataset and examine within-strata MADs:

svy <- read.table("flag.ex03.csv", header = TRUE, sep = ",")

head(svy)

The file flag.ex03.csv is a comma-separated-value (CSV) file containing anthropometric data from a
national SMART survey in Nigeria.

The data stored in the file flag.ex03.csv were collected using methods similar to MICS and DHS
surveys. The only difference is that the survey collected anthropometric data on children aged
between 6 and 59 months. In this exercise we will concentrate on WHZ.

Data are stratified by region and by state within region. We will create a new variable that
combines region and state:

svy$regionState <- paste(svy$region, svy$state, sep = ":")

head(svy)

table(svy$regionState)

We can examine the adjusted MAD for whz for each combination of region and state in the survey
dataset using:

by(svywhz, svyregionState, mad, na.rm = TRUE)

The long output can be made more compact, easier to read, and easier to work with:

mads <- by(svywhz, svyregionState, mad, na.rm = TRUE)

mads <- round(mads[1:length(mads)], 2)

mads

The saved mads object can be summarised:

summary(mads)

This returns:

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.8400 0.9300 0.9800 0.9892 1.0300 1.2000

111

A table can also be useful:

 table(mads)

In this example the adjusted MAD of the whz variable is within the limits 0.8 to 1.2 for all combinations
of region and state.

Note that we combined region and state. We did this to avoid potential problems with duplicate
state names (i.e. the same state name used in more than one region).

In the previous exercise we used the raw data (i.e. without flagging). It is better to use only the data in
which records with flagging codes relevant to whz and cases of oedema are censored.

This is a national SMART survey so we will use SMART flagging criteria. We will use the
national.SMART() function to add SMART flags to the survey dataset:

svyFlagged <- national.SMART(x = svy, strata = "regionState")

We need to exclude records with flagging codes relevant to whz:

 svyFlagged <- svyFlagged[!(svyFlagged$flagSMART %in% c(2, 3, 6, 7)),]

Note that oedema is not recorded in the dataset so we cannot exclude oedema cases.

We can now calculate the MAD for whz in each stratum:

mads <- by(svyFlagged$whz, svyFlagged$regionState, mad, na.rm = TRUE)

mads <- round(mads[1:length(mads)], 2)

mads

The saved mads object can be summarised:

summary(mads)

This returns:

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.8500 0.9000 0.9600 0.9665 1.0100 1.1700

In this analysis the adjusted MAD of the whz variable is within the limits 0.8 to 1.2 for all combinations
of region and state.

10.7 Measures of dispersion

Measures of dispersion summarise how cases (e.g. children classified as wasted, stunted, or
underweight) are distributed across a survey’s primary sampling units (e.g. clusters).

We will retrieve a survey dataset:

 svy <- read.table("flag.ex01.csv", header = TRUE, sep = ",")

 head(svy)

112

The file flag.ex01.csv is a comma-separated-value (CSV) file containing anthropometric data from a
recent SMART survey in Sudan.
We will apply WHO flagging criteria to the data:

 svy$flag <- 0

 svy$flag <- ifelse(!is.na(svy$haz) & (svy$haz < -6 | svy$haz > 6),
 svy$flag + 1, svy$flag)

 svy$flag <- ifelse(!is.na(svy$whz) & (svy$whz < -5 | svy$whz > 5),
 svy$flag + 2, svy$flag)

 svy$flag <- ifelse(!is.na(svy$waz) & (svy$waz < -6 | svy$waz > 5),
 svy$flag + 4, svy$flag)

We should exclude flagged records:

 svy <- svy[svy$flag == 0,]

We will apply a case-definition for being stunted:

 svy$stunted <- ifelse(svy$haz < -2, 1, 2)

We can examine the distribution of stunted cases across the primary sampling units in this survey:

 table(svypsu, svystunted)

We only need the counts of cases in each primary sampling unit:

 table(svypsu, svystunted)[,1]

 barplot(table(svypsu, svystunted)[,1], xlab = "PSU", ylab = "Cases",
 cex.names = 0.5)

It will be useful to keep this for later use:

 casesPerPSU <- table(svypsu, svystunted)[,1]

 casesPerPSU

We are interested in how cases are distributed across the primary sampling units.

There are three general patterns. These are random, clumped, and uniform.

We can identify the pattern to which the example data most likely belongs using an index of dispersion.

The simplest index of dispersion, and the one used by SMART (2015), is the variance to mean ratio:

The interpretation of the variance to mean ratio is straightforward:

 Variance to mean ratio ≈ 1 Random

 Variance to mean ratio > 1 Clumped (i.e. more clumped than random)

 Variance to mean ratio < 1 Uniform (i.e. more uniform than random)

113

The value of the variance to mean ratio can range between zero (maximum uniformity) and the total
number of cases in the data (maximum clumping). Maximum uniformity is found when the same
number of cases are found in every primary sampling unit. Maximum clumping is found when all cases
are found in one primary sampling unit.

With the example data:

 varianceCasesPerPSU <- var(casesPerPSU)

 meanCasesPerPSU <- sum(casesPerPSU) / length(casesPerPSU)

 V2M <- varianceCasesPerPSU / meanCasesPerPSU

 V2M

The observed variance to mean ratio (0.6393127) suggests that the distribution of cases across
primary sampling units is not completely uniform, but neither is it random.

A formal (Chi-squared) test can be performed. The Chi-squared test statistic can be calculated using:

 sum((casesPerPSU - meanCasesPerPSU)^2) / meanCasesPerPSU

This returns:

 18.54007

The critical values for this test statistic can be found using:

 qchisq(p = c(0.025, 0.975), df = length(casesPerPSU) - 1)

This returns:

 16.04707 45.72229

If the Chi-squared test statistic was below 16.04707 then we would conclude that the pattern of cases
across primary sampling units in the example data is uniform. This is not the case in the example data.

If the Chi-squared test statistic was above 45.72229 then we would conclude that the pattern of cases
across primary sampling units in the example data is clumped. This is not the case in the example data.

Since the Chi-squared test statistic falls between 16.04707 and 45.72229 we conclude that the
pattern of cases across primary sampling units in the example data is random.

There are problems with the variance to mean ratio. Some clearly non-random patterns can produce
variance to mean ratios of one. The variance to mean ratio is also strongly influenced by the total
number of cases present in the data when clumping is present.

A better measure is Green's Index of Dispersion:

Green’s Index corrects the variance to mean ratio for the total number of cases present in the data.

114

The value of Green's Index can range between for maximum uniformity (specific to the
dataset) and one for maximum clumping. The interpretation of Green’s Index is straightforward:

 Green’s Index ≈ 0 Random

 Green’s Index > 0 Clumped (i.e. more clumped than random)

 Green’s Index < 0 Uniform (i.e. more uniform than random)

The sampling distribution of Green’s Index is not well described. The NIPN data quality toolkit
provides the greenIndex() function that overcomes this problem. This R language function uses the
bootstrap technique to estimate Green's Index and test whether the distribution of cases across
primary sampling units is random.

The greenIndex() function requires you to specify the name of the survey dataset, the name of the
variable specifying the primary sampling unit, and the name of the variable specifying case status.
With the example data:

 greensIndex(data = svy, psu = "psu", case = "stunted")

this returns:

 Green's Index of Dispersion

 Green's Index (GI) of Dispersion = -0.0013, 95% CI = (-0.0021, -0.0004)
 Maximum uniformity for this data = -0.0035
 p-value = 0.0040

The point estimate of Green's Index (-0.0013) is below zero and the p-value of the test for a random
distribution of cases across primary sampling units (0.0040) is below 0.05. The distribution of cases
across primary sampling units in the example data is significantly more uniform than it is random. We
can see this graphically using:

 table(svypsu, svystunted)[,1]

 barplot(table(svypsu, svystunted)[,1], xlab = "PSU", ylab = "Cases",
 cex.names = 0.5)

 abline(h = sum(casesPerPSU) / length(casesPerPSU), lty = 2)

The dashed line on the plot marks the mean number of cases found in each primary sampling unit. A
uniform distribution would show all bars ending close to this line (see Figure 10.9).

SMART uses the variance to mean ratio as a test of data quality. Green’s Index is a more robust choice
because it can be used to compare samples that vary in overall sample size and the number of
sampling units used.

The idea behind using a measure of dispersion to judge data quality is a belief that the distribution of
cases of malnutrition across primary sampling units should always be random. If this is not the case
then the data are considered to be suspect. The problem with this approach is that deviations from
random can reflect the true distribution of cases in the survey area. This may occur when the survey
area comprises, for example, more than one livelihood zone. It is also less likely to be the case for
conditions, such as wasting and oedema, that are associated with infectious disease and so may be
more clumped than randomly distributed across primary sampling units. This may become a
particular problem when proximity sampling is used to collect the within-cluster samples.

115

Measures of dispersion are problematic when used as measures of data quality and should be
interpreted with caution. The exception to this rule is finding maximum, or almost maximum,
uniformity or maximum, or almost maximum, clumping. A finding of maximum uniformity is likely
only when data have been fabricated. A finding of maximum clumping may indicate poor data
collection and / or poor data management.

Figure 10.9 : Distribution of cases of stunting across primary sampling units in the example
dataset. The dashed line on the plot marks the mean number of cases found in each primary
sampling unit. A uniform distribution would show all bars ending close to this line.

116

11. Mean, standard deviation, prevalence, and the PROBIT estimator

This section supports the data quality toolkit by providing tools to calculate the prevalence from the
mean and standard deviation of a normally distributed variable using the PROBIT estimator, and to
calculate the standard deviation when only the mean and prevalence are provided in a survey report.

11.1 The relationship between mean z-score and the prevalence of indicators

For many anthropometric indicators the raw measurements and derived z-scores are often normally
distributed. When the distribution is not normal it can usually be transformed towards normality.

We will start with some simulated data:

 set.seed(0)

zScore <- rnorm(1000, mean = -0.55, sd = 1.10)

This generates 1,000 values that are normally distributed around a population mean (i.e. -0.55) with
a population standard deviation (i.e. 1.10) and stores them in the zScore object. We can treat zScore
as sample of size n = 1,000 taken from a much larger population that has a true mean of -0.55 and a
true standard deviation of 1.10.

We can examine and summarise the generated data:

 zScore

 mean(zScore)

 sd(zScore)

 hist(zScore)

The observed mean (-0.5674125) is different from the population mean (-0.55) and the observed
standard deviation (1.097805) is different from the population standard deviation (1.10). This is
because zScore is a sample from a population with a mean of -0.55 and a standard deviation of 1.10.

We can apply a case-definition (1 for cases, 2 for not-case) using:

 case <- ifelse(zScore < -2, 1, 2)

and estimate the prevalence:

 prop.table(table(case))

This gives:

case
 1 2
0.094 0.906

The estimated prevalence is 9.40%. This is the classical or frequentist method for estimating
prevalence: apply a case-definition and examine the frequency of cases as a proportion of the total
sample.

117

An alternative approach is to use the PROBIT method. The PROBIT method uses the cumulative normal
probability density function to estimate the prevalence for a given case-defining threshold using the
sample mean and sample standard deviation:

 pnorm(-2, mean = mean(zScore), sd = sd(zScore))

This returns:

0.09595394

The estimated prevalence is 9.60%.

The exact prevalence can also be calculated in the same way using the true mean and true standard
deviation of the population:

 pnorm(-2, mean = -0.55, sd = 1.10)

This returns:

 0.0937214

The true prevalence is 9.37%.

The classical and the PROBIT approaches yield similar estimates of prevalence and both are close to
the true prevalence (i.e. the prevalence in the population)

A key advantage of the PROBIT approach is that estimates are more precise (i.e. standard errors are
smaller and confidence intervals narrower) than those obtained using the classical approach with a
given sample size. This is because the PROBIT approach uses more information from the sample than
the classical approach, which loses information when a wide range of values is reduced to a set of
binary values (i.e. case / not case).

The key disadvantage of the PROBIT approach is that it relies on the variable being normally
distributed. If this is not the case, then PROBIT estimates may be inaccurate.

Data that we suspect is not normally distributed can usually be transformed towards normality before
using the PROBIT approach to estimate prevalence.

The main point to note here is that the mean and standard deviation of normally distributed indicators
can be used to estimate the prevalence.

Another advantage of the PROBIT method is that it works when errors in data caused by rounding and
digit preference cause the classical method to produce inaccurate estimates. Here we simulate some
MUAC data:

 set.seed(0)

 muac <- round(rnorm(1000, mean = 140, sd = 11))

 mean(muac)

 sd(muac)

 hist(muac)

118

The true prevalence for MUAC < 125 mm is:

 pnorm(125, mean = 140, sd = 11)

This returns:

 0.08634102

The true prevalence is 8.63%.

The classical prevalence estimate is:

 case <- ifelse(muac < 125, 1, 2)

 prop.table(table(case))

This returns:

 case

 1 2
0.086 0.914

The estimated prevalence is 8.60%.

The PROBIT prevalence estimate is:

 pnorm(125, mean = mean(muac) , sd = sd(muac))

This returns:

0.08892795

The estimate prevalence is 8.89%.

The classical and the PROBIT approaches yield similar prevalence estimates and both are close to the
true prevalence.

We will now subject the data to rounding to simulate very strong digit preference:

 muac <- round(muac / 5) * 5

 table(muac)

 digitPreference(muac, digits = 0)

The resulting digit preference score (i.e. DPS = 66.68) would render this data very suspect. We can see
the digit preference using:

 plot(digitPreference(muac, digits = 0))

or using the hist() function and specifying a large number for the breaks parameter:

 hist(muac, breaks = 1000)

Estimating the prevalence from the rounded data using the classical approach:

 case <- ifelse(muac < 125, 1, 2)

119

 prop.table(table(case))

gives:

case
 1 2
0.051 0.949

This (i.e. 5.10%) is very different from the true prevalence (i.e. 8.63%).

Estimating prevalence from the rounded data using the PROBIT approach:

pnorm(125, mean = mean(muac) , sd = sd(muac))

yields:

0.08871178

This (i.e. 8.87%) is still close to the true prevalence.

These results are summarised in Table 11..1.

Table 11.1. Classical and PROBIT estimates of prevalence made using clean or rounded data

 Estimated prevalence

 Clean data Rounded data

 Classical approach PROBIT approach Classical approach PROBIT approach

True
prevalence

Estimate Error* Estimate Error* Estimate Error* Estimate Error*

8.63% 8.60% -0.03% 8.89% +0.26% 5.10% -3.53% 8.87% +0.24%

* Error is calculated as: estimated prevalence – true prevalence.
 Positive errors indicate overestimates. Negative errors indicate underestimates.

The PROBIT approach is not greatly affected by rounding and strong digit preference, giving only a
small positive error when used with the rounded data. The classical approach gave a large negative
error when used with the rounded data.

11.2 Mean, prevalence, and the standard deviation

The relationship between the prevalence and the distribution of a variable (defined by its mean and
standard deviation) allows us to estimate the standard deviation from the mean and the prevalence.
This can be useful if we want to find the standard deviation when only the mean and prevalence are
reported, such as in some MICS and DHS survey reports.

We can use the cumulative probability density function of the normal distribution to help find the
standard deviation for a given mean and prevalence. Here we will work with:

Observed mean = -0.67

Observed prevalence = 11.48%

120

The task is to find the value of the standard deviation (SD) in the equation:

which gives an answer very close to zero.

We can try doing this using R and a directed trial and error approach. We start by guessing the value of
the SD. A good first guess for SD is 1.00:

 0.1148 - pnorm(-2, -0.67, 1.00)

This gives:

 0.02304086

Note that we specify prevalence as a proportion.

The difference from the target value of zero is positive so we need to increase our guess for the SD:

0.1148 - pnorm(-2, -0.67, 1.20)

This gives:

-0.01905894

The difference from the target value of zero is negative so we need to decrease our guess for the SD:

0.1148 - pnorm(-2, -0.67, 1.10)

this gives:

0.001486039

The difference from the target value of zero is positive and small so we should to slightly increase our
guess for the SD:

0.1148 - pnorm(-2, -0.67, 1.11)

This gives:

-0.0006199333

The difference from the target value of zero is now very small.

We would probably stop our search with estimated SD = 1.11 since it could only be improved by
adding more decimal places, which we would be unlikely to report.

The search for the best estimate of SD can be automated. To do this we must first write an objective
function that specifies the function that we want to be minimised:

objFun <- function(SD) abs(0.1148 - pnorm(-2, -0.67, SD))

The abs() function strips any sign from the results. We do this because we want to find the value of
SD that yields the minimum possible difference from zero ignoring the direction (i.e. the sign) of the
difference.

121

We can now use the optimise() function to find the value of SD that yields the difference closest to
zero:

 optimise(objFun, interval = c(0.5, 2.0))

The interval parameter tells the optimise() function to search between 0.5 and 2.0 for the value
of SD that minimises the value returned by the objective function.

The optimise() function returns:

$minimum
[1] 1.107052

$objective
[1] 1.400078e-07

The item labelled $minimum is the value of SD that minimises the objective function and is our best
estimate of the standard deviation. The item labelled $objective is the difference (very close to zero)
between the observed prevalence and the prevalence expected when the mean is -0.67 and the SD is
1.107052.

The six decimal places given for SD are excessive given that our inputs are estimated to only two
decimal places and the underlying distribution of the indicator of interest is unlikely to be perfectly
normal. It is better to round the results to two decimal places:

estimatedSD <- optimise(objFun, interval = c(0.5, 2.0))

estimatedSD

round(estimatedSD$minimum, 2)

This returns:

 1.11

We can use a very similar process if we have raw indicator values such as the mean and standard
deviation of MUAC measurements. With:

Observed mean = 139.82

Observed prevalence = 8.6%

We would use:

objFun <- function(SD) abs(0.086 - pnorm(125, 139.82, SD))

optimise(objFun, interval = c(5, 20))

Note that we define the objective function using the observed prevalence specified as a proportion
(0.086), the observed mean (139.82), and the appropriate case-defining threshold (i.e. 125 mm).

The optimise() function returns:

$minimum
[1] 10.85074

$objective
[1] 8.186181e-08

122

11.3 Diagnosing optimise()

The interval parameter of the optimise() function specifies the range of values to be searched
when seeking the minimum. We need to specify an appropriate range of values for the interval
parameter. The optimise() function can yield misleading results if we specify a range of values for
the interval parameter that does not include the true minimum. It is easy to detect and fix this
problem: if the reported $minimum is very close to either of the interval values then you should
suspect a problem and try again with a wider range. For example:

optimise(objFun, interval = c(5, 8))

yields:

$minimum
[1] 7.999924

$objective
[1] 0.05402423

The reported $minimum is 7.999924. This is very close to the upper value (i.e. 8) of the specified
interval. We suspect, therefore, that our specified interval is too narrow and so try again with a
wider interval:

optimise(objFun, interval = c(5, 20))

which yields:

$minimum
[1] 10.85074

$objective
[1] 8.186181e-08

The reported $minimum is 10.85074. This is not close to either the lower or upper value of the
specified interval. We can, therefore, accept the reported $minimum as a good estimate of the
standard deviation.

123

12. Assessing data quality

This section presents an approach to assessing data quality. A set of tests is used to assess whether
data are of good quality. Each test has a criterion and a standard

The criterion describes what is being tested and always refers to an attribute of the data being tested.
Examples of criteria are “Outliers”, “Illegal values”, and “Age-heaping”. Criteria may also refer to a
specific variable as in “Digit preference (height)”.

The standard refers to how good quality data is defined. The standard may be either wholly
quantitative or semi-quantitative:

An example of a wholly quantitative standard is the maximum proportion of outliers accepted
in a variable.

An example of a semi-quantitative standard is an analysis of data using histograms, normal-
normal quantile plots, tests of normality, and summary statistics such as skewness and
kurtosis.

Data are assessed for their quality by applying each and every appropriate test to the data according to
the order suggested in Figure 1.1, using the tools provided. The criteria to judge that data are of good
quality are presented in Table 12.1 with the classification used in SMART plausibility checks for the
same or similar criterion. In general for the criteria that are the same the NIPN data quality toolkit
judges data to be of good quality if it is classified as good or excellent quality in SMART plausibility
checks.

The main differences from SMART plausibility checks are that the NIPN toolkit provides a
classification of illegal values, outliers and age-heaping; it examines the deviation, skewness and
kurtosis of all z-scores, not just weight-for-height; and it applies a different index of the dispersion of
cases between clusters, using Green’s index rather than the variance to mean ratio. The SMART
plausibility checks also offer a grade for each individual score and a weighted grade for the total score,
which may be found elsewhere (SMART, 2015).

Failing a test does not mean that the data that failed the test are of no use. It means that we should
treat the failing data with a degree of caution. The usual effect of this will be to place limits on how we
use the data. If we find, for example, marked age-heaping in children’s ages at whole and half-years
then we would want to limit the analysis to year-centred age-groups or broader age-groups based
upon year-centred age-groups. The use of age-groups such as 12 to 23 months would result in
misleading analyses. This is because many children aged between 9 and 11 months are likely to be
wrongly included and many children between 21 and 23 months are likely to be wrongly excluded. An
analysis that is nominally for children age between 12 and 23 months might really be analysis of
children aged between 9 and 20 months.

Failing a test may also mean that common analyses will need to be replaced by more robust analyses.
Classical statistical tests might be replaced by their non-parametric equivalents (e.g. a student’s t-test
might be replace by a Wilcoxon rank-sum test). Classical summaries might be replaced by robust
summaries (e.g. means by medians, standard deviations by median absolute deviations). Estimators
may also need to be changed (e.g. PROBIT estimators may need to replace classical estimators for
estimating prevalences of anthropometric deficits).

Failing a test is a warning to proceed with caution. It does not condemn the data as useless. We expect
most datasets to fail one or more tests.

A simple overall or summary measure of data quality is the proportions of tests that were not good
quality. Like many summary measures this approach will hide details and will usually not be very
useful

124

Table 12.1. Criteria of data quality proposed for the NIPN toolkit and the criteria applied by ENA software plausibility checks. Graphical methods to
assess data quality should also be used.

 NIPN data quality toolkit ENA software plausibility checks (SMART, 2015)
Criteria of
data quality

 Description and
variables applied to

Section
in toolkit

Toolkit
functions

Unit

Good
quality

 Description and
variables applied to

 Classification of data quality
 Unit Excellent Good Acceptable Problematic

Illegal
values

 Perform on each
categorical variable

3 % < 1% No classification

Sex ratio Significant difference
from expected sex ratio

4 sexRatioTest() p-value p ≥ 0.05 Significant difference
from expected ratio

p-value >0.1 >0.05 >0.001 ≤0.001

Age
structure

 Significant difference
from expected structure

5 pyramid.plot()
ageChildren()

p-value p ≥ 0.05 No classification

Age ratio Significant difference in
no. of children 6-29 vs
30-59 months

5 ageRatioTest() p-value p ≥ 0.05 Significant difference
in no. of children 6-29
vs 30-59 months

p-value >0.1 >0.05 >0.001 ≤0.001

Digit
preference
score (DPS)

 Measurements of:
weight, length or height,
MUAC, and others

6 fullTable()
digitPreference()

Number DPS
<12

 Measurements of:
weight, length or
height, MUAC only

Number 0 – 7 8 – 12 13 – 20 > 20

Age heaping Significant difference
from expected numbers

7 ageHeaping() p-value p ≥ 0.05 No classification

Outliers Perform on each
quantitative variable

8 outliersMD()
outliersUV()

% < 1% No classification

Flagged z-
scores

 WHZ, HAZ, WAZ, BAZ*
and others out of range
using WHO criteria

9 % < 5% WHZ, HAZ, WAZ out
of range using
SMART criteria

% 0 – 2.5 >2.5 – 5.0 >5.0 – 7.5 >7.5

Deviation of
z-scores

 WHZ, HAZ, WAZ, BAZ
and other z-scores

10 histNormal()
qqNormalPlot()

mad()

Adj. median
absolute
deviation

≥0.8
&

≤1.2

 WHZ Standard
deviation

<1.10
&

>0.90

<1.15
&

>0.85

<1.20
&

>0.80

≥1.20
&

≤0.80
Skewness of
z-scores

 WHZ, HAZ, WAZ, BAZ
and other z-scores

10 skewKurt() Number

<± 0.4 WHZ Number <± 0.2 <± 0.4 <± 0.6 >± 0.6

Kurtosis of
z-scores

 WHZ, HAZ, WAZ, BAZ
and other z-scores

10 skewKurt() Number <± 0.4 WHZ Number <± 0.2 <± 0.4 <± 0.6 >± 0.6

Index of
dispersion
of cases

 Green’s index 10 greenIndex() Value p ≥ 0.05 Variance to mean
ratio of WHZ

p-value >0.1 >0.05 >0.001 ≤0.001

* WHZ = z-score of weight-for-height; HAZ = z-score of height-for-age; WAZ = z-score of weight-for-age; BAZ = z-score of BMI-for-age

 125

Appendix Z

Z.1 Calculating anthropometric z-scores using the addWGSR() function

The NiPN anthropometry data quality toolkit provides an R language function addWGSR() that
calculates a range of anthropometric z-scores and adds them to survey data:

 Weight-for-length (wfl) z-scores for children with lengths between 45 and 110 cm

 Weight-for-height (wfh) z-scores for children with heights between 65 and 120 cm

 Length-for-age (lfa) z-scores for children aged less than 24 months

 Height-for-age (hfa) z-scores for children aged between 24 and 228 months

 Weight-for-age (wfa) z-scores for children aged between zero and 120 months

 Body mass index-for-age z-scores (bfa) for children aged between zero and 228 months

 MUAC-for-age (mfa) z-scores for children aged between 3 and 60 months

 Triceps skinfold-for-age (tsa) z-scores for children aged between 3 and 60 months

 Sub-scapular skinfold-for-age (ssa) z-scores for children aged between 3 and 60 months

 Head circumference-for-age (hca) z-scores for children aged between zero and 60 months

Note that length is measured supine while height is measured standing.

The z-scores are calculated using the WHO Child Growth Standards (2006a, 2006b) for children aged
between zero and 60 months or the WHO Growth References (2007) for school-aged children and
adolescents from 5 to 19 years.

The addWGSR() function and supporting data are in the file addWGSR.r.

The data set to practice using the function is in the file z.ex01.csv.

You should use source() to load the addWGSR() function.

For example, if you place the addWGSR.r file in the directory:

~/Documents/Clients/NIPN/toolkit/

you would use:

source("~/Documents/Clients/NIPN/toolkit/addWGSR.r")

to load the file into R.

That is a UNIX path. If you are using Microsoft WindowsTM and have placed the file addWGSR.r in the
directory:

c:\dataquality\

then you would use:

source("c:/dataquality/addWGSR.r")

to load the file into R.

 126

Note that R uses the forward slash (/) rather than the backslash (\) as separators in pathnames. This
is because R uses the backslash character as an “escape” character (i.e. a special character that alters
the meaning of the subsequent character).

The file addWGSR.r contains the WHO standards and reference database and may take several
seconds to load.

Z.2 How to use the addWGSR() function.

We will retrieve a survey dataset in the c:\dataquality\ directory:

svy <- read.table("c:/dataquality/z.ex01.csv", header = TRUE, sep = ",")

 head(svy)

This returns:

 psu age sex weight height muac oedema
 1 1 10 1 5.7 64.2 125 2
 2 1 10 2 5.8 64.4 121 2
 3 1 9 2 6.5 62.2 139 2
 4 1 11 9 6.5 64.9 129 2
 5 1 24 2 6.5 72.9 120 2
 6 1 12 2 6.6 69.4 126 2

The file z.ex01.csv is a comma-separated-value (CSV) file containing anthropometric data from a
Rapid Assessment Method (RAM) survey from Burundi.

Anthropometric indices (e.g. weight-for-height z-scores) have not been calculated and added to the
data.

We will use the addWGSR() function to add weight-for-height (wfh) z-scores to the example data:

 svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
 secondPart = "height", index = "wfh")

 head(svy)

A new column named wfhz has been added to the dataset:

 psu age sex weight height muac oedema wfhz
 1 1 10 1 5.7 64.2 125 2 -2.73
 2 1 10 2 5.8 64.4 121 2 -2.04
 3 1 9 2 6.5 62.2 139 2 0.13
 4 1 11 9 6.5 64.9 129 2 NA
 5 1 24 2 6.5 72.9 120 2 -3.44
 6 1 12 2 6.6 69.4 126 2 -2.26

The wfhz column contains the weight-for-height (wfh) z-scores calculated from the variable sex,
weight, and height in the svy dataset. The calculated z-scores are rounded to two decimals places
unless the digits option is used to specify a different precision (see Table Z1).

The addWGSR() function takes up to nine parameters to calculate each index separately, depending on
the index required. These are described in Table Z1. The parameter thirdPart is needed only to
calculate BMI-for-age. The output, digits and standing parameters are optional. All other
parameters (data, sex, firstPart, secondPart and index) must be specified.

 127

Table Z1. The nine parameters of the addWGSR() function.

Parameter Description Detail

data Name of the survey dataset. This should be an R data frame

sex
Name of the column in data that holds data
on the sex of each respondent.

This must be present and coded as:

 1 = male
 2 = female

firstPart
Name of the column in data that holds the
first component of the required index in the
required units.

The first component of the index is:

 Weight (in kg) for wfl, wfh, wfa, bfa
 Height or length (in cm) for lfa, hfa, bfa
 MUAC (in cm) for mfa
 Sub-scapular skinfold (in mm) for ssa
 Triceps skin fold (in mm) for tsa
 Head circumference (in cm) for hca

The column (variable) name must be specified as a character
string (e.g. "weight" not weight).

secondPart
Name of the column in data that holds the
second component of the required index in
the required units.

The second component of the index is:

 Age (in days) for all “–for-age” indices except bfa
 Height or length (in cm) for bfa, wfh or wfl

The column (variable) name must be specified as a character
string (e.g. "age" not age).

thirdPart
Name of the column in data that holds age (in
days) when calculating bfa z-scores.

Age (in days) for bfa. This parameter need only be specified
when calculating bfa z-scores.

The column (variable) name must be specified as a character
string (e.g. "age" not age).

index The short name of the index required.

This should be one of:

 "wfl" Weight for length
 "wfh" Weight for height
 "lfa" Length for age
 "hfa" Height for age
 "wfa" Weight for age
 "bfa" BMI for age
 "mfa" MUAC for age
 "tsa" Triceps skinfold for age
 "ssa" Sub-scapular skinfold for age
 "hca" Head circumference for age

The index parameter must be specified as a character string
(e.g. "wfa") note wfa).

standing
The name of column (variable) specifying how
“stature” was measured.

This optional parameter should be coded as:

 1 = Standing
 2 = Supine
 3 = Unknown

All other values will be recoded to 3 = Unknown.

The column (variable) name must be specified as a character
string (e.g. "measured" not measured).

If no column (variable) name is specified height and age
rules will be applied (see Table Z2).

output
The name of the column containing the
specified index to be added to the survey
dataset.

If you do not specify a value for output then the added
column will take the short name of the specified index with
a z appended (e.g. wfaz). A different output parameter
must be specified as a character string (e.g. "xyz1" not
xyz1).

digits The number of decimal places for output.
This is an optional parameter (e.g. digits = 4). The default
is to round the calculated z-scored to two decimal places.

 128

The standing parameter in Table Z1 specifies how “stature” (i.e. length or height) was measured. If
this is not specified, and in some special circumstances, height and age rules will be applied when
calculating z-scores. These rules are described in Table Z2.

Table Z2. Height and age rules applied by the addWGSR() function.

index standing age height* Action

"hfa" or "lfa"

Standing

< 731 days

index ="lfa"
height = height + 0.7 cm

Supine index = "lfa"

Unknown index = "lfa"

Standing

≥ 731 days

 index = "hfa"

Supine
index = "hfa"
height = height – 0.7 cm

Unknown Index = "hfa"

"wfh" or "wfl"

Standing

 < 65 cm
index = "wfl"
height = height + 0.7 cm

 ≥ 65 cm index = WFH

Supine

 ≤ 110 cm index = "wfl"

 > 110 cm
index = "wfh"
height = height – 0.7 cm

Unknown

 < 87 cm index = "wfl"

 ≥ 87 cm index = "wfh"

"bfa"
Standing < 731 says height = height + 0.7 cm

Supine ≥ 731 days height = height - 0.7 cm

* Height in this table refers to the variable holding “stature” as either height or length

 129

The addWGSR() function will not produce error messages unless there is something very wrong with
the data or the specified parameters. If an error is encountered in a record then the value NA is
returned. Error conditions are listed in Table Z3.

Table Z3. Error conditions tested by the addWGSR() function

Error condition Action

Missing or nonsense value in standing parameter
Set standing to 3 (unknown) and apply appropriate
height or age rules (see Table Z2).

Unknown index specified

Return NA for z-score.

Missing sex

Missing firstPart

Missing secondPart

sex is not male (1) or female (2)

firstPart is not numeric*

secondPart is not numeric*

Missing thirdPart when index = "bfa"

thirdPart is not numeric* when index = "bfa"

secondPart is out of range for specified index

* This refers to the column / variable type not to individual values.

We can see this error behaviour using the example data:

 table(is.na(svy$wfhz))

This returns:

 FALSE TRUE
 220 1

We can display the problem record:

 svy[is.na(svy$wfhz),]

This returns:

 psu age sex weight height muac oedema wfhz
 4 1 11 9 6.5 64.9 129 2 NA

The problem is due to the value 9 in the sex column, which should be coded 1 (for male) and 2 (for
female). Z-scores are only calculated for records with sex specified as either 1 (male) or 2 (female). All
other values, including NA, will return NA.

The addWGSR() function requires that data are recorded using the required units or required codes
(see Table Z1).

 130

The addWGSR() function will return incorrect values if the data are not recorded using the required
units. For example, this attempt to add weight-for-age z-scores to the example data:

 svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",

secondPart = "age", index = "wfa")

will give incorrect results:

 summary(svy$wfaz)

The odd range of values:

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 3.450 7.692 9.840 9.684 11.430 15.900 1

is due to age being recorded in months rather than days.

It is simple to convert all ages from months to days:

 svy$age <- svy$age * (365.25 / 12)

 head(svy)

before calculating and adding weight-for-age z-scores:

 svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",

secondPart = "age", index = "wfa")

 head(svy)

 summary(svy$wfaz)

The muac column in the example dataset is recorded in millimetres (mm). We need to convert this to
centimetres (cm) before using the addWGS() function to calculate MUAC-for-age z-scores:

 svy$muac <- svy$muac / 10

 head(svy)

 svy <- addWGSR(svy, sex = "sex", firstPart = "muac",
secondPart = "age", index = "mfa")

 head(svy)

As a last example we will use the addWGSR() function to add body mass index-for-age (bfa) z-scores to
the data to create a new variable called bmiAgeZ with a precision of 4 decimal places as:

 svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",

secondPart = "height", thirdPart = "age", index = "bfa",
output = "bmiAgeZ", digits = 4)

 head(svy)

Be careful if you copy and paste the R commands from this document and then edit them to create new
commands. It is best to do this in the user interface that you use with R, or in a plain text editor (see
Troubleshooting, below). This is because word processors such as Microsoft Word® tend to use
“smart” asymmetrical quotes like this “text” rather than plain, symmetrical quotes such as in
"text". R does not recognise the asymmetrical quotes and will give an error message if they are used.

 131

Z.3 Creating indicators from indices

The classical analysis of prevalence requires the application of a case-definition to a z-score to create
an indicator, or to a raw measurement (e.g. MUAC) to create an indicator.

Cases definitions are usually applied after data have been checked and cleaned and after nutritional
indices have been calculated and added. Care should be taken to apply flagging criteria to
anthropometric indices. The NIPN anthropometry data quality toolkit describes methods to check all
data before calculating any indices and can then add flags to outliers.

Table Z4 shows the ranges in values of z-scores used to calculate the main anthropometric indices.
The ranges given are for each index for all cases (e.g. in total) and separately for moderate or severe
cases.

Table Z4. Case definitions of anthropometric indicators of undernutrition derived from the
anthropometric indices for children calculated by the addWGSR() function.

 Anthropometric indicator

 Total if … Moderate if … Severe if … Age range

Anthropometric index z-score <-2 z-score -3 ≤ Z < -2 z-score <-3 (months)

Weight-for-length Wasted
Moderately

wasted

Severely
wasted

 0 - 24

Weight-for-height Wasted
Moderately

wasted

Severely
wasted

 >24 - 60

Length-for-age Stunted
Moderately

stunted

Severely
stunted

 0 - 24

Height-for-age Stunted
Moderately

stunted

Severely
stunted

 >24 - 228

Weight-for-age Underweight
Moderately

underweight

Severely
underweight

 0 - 120

Body mass index-for-age Thin
Moderately

thin

Severely
thin

 0 - 228

MUAC-for-age No term No term No term 3 - 60

Triceps skinfold-for-age No term No term No term 3 - 60

Sub-scapular skinfold-for-age No term No term No term 3 - 60

Head circumference-for-age No term No term Microcephalic 0 - 60

 132

We will use the addWGSR() function to add height-for-age (hfa) z-scores to the example data using age
calculated in days.

 svy <- addWGSR(data = svy, sex = "sex", firstPart = "height",
 secondPart = "age", index = "hfa")

 head(svy)

A new column named hfaz has been added to the dataset:

 psu age sex weight height muac oedema ... hfaz
1 1 304.3750 1 5.7 64.2 12.5 2 ... -3.97
2 1 304.3750 2 5.8 64.4 12.1 2 ... -2.86
3 1 273.9375 2 6.5 62.2 13.9 2 ... -3.29
4 1 334.8125 9 6.5 64.9 12.9 2 ... NA
5 1 730.5000 2 6.5 72.9 12.0 2 ... -4.19
6 1 365.2500 2 6.6 69.4 12.6 2 ... 1.79

The hfaz column contains the height-for-age (hfa) z-scores calculated from the sex, height, and age
in the svy dataset.

First we should check for outliers using the thresholds described in Section 9 of the NIPN Toolkit,
Identifying outliers using flags, and add a flag variable:

svy$flag <- ifelse(!is.na(svy$hfaz) & (svy$hfaz < -6 | svy$hfaz > 6), 1, 0)

head(svy)

table(svy$flag)

There are no flagged records.

We can now apply a case definition to identify all children who are stunted in which 1=stunted and
2=not stunted:

 svy$tst <- ifelse(svy$hfaz < -2, 1, 2)

 head(svy)

Case definitions for children who are moderately stunted and severely stunted can be applied in a
similar manner:

 svy$mst <- ifelse(svy$hfaz >= -3 & svy$hfaz < -2, 1, 2)

 svy$sst <- ifelse(svy$hfaz < -3, 1, 2)

 head(svy)

 133

In some cases it is necessary to account for additional variables when applying case-definitions. For
example, the case definition of wasted is only one part of the case definition for “acute malnutrition”
The definition of total or “global”1 acute malnutrition (GAM) and severe acute malnutrition (SAM)
include bilateral pitting oedema in their case definitions. In this case we would use the variable wfhz
that we created earlier with the variable oedema:

 svy$gam <- ifelse(svy$wfhz < -2 | svy$oedema == 1, 1, 2)

 svy$mam <- ifelse(svy$wfhz >= -3 & svy$wfhz < -2 & svy$oedema != 1, 1, 2)

 svy$sam <- ifelse(svy$wfhz < -3, 1, 2)

 head(svy)

Indices with a weight component may be upwardly biased if cases of oedema are included in the
calculation. In the case of weight-for-age z-scores, for example, we would use something like:

 svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
 secondPart = "age", index = "wfa")

 svy$tuw <- ifelse(svy$wfaz < -2 & svy$oedema != 1, 1, 2)

 svy$muw <- ifelse(svy$wfaz >= -3 & svy$wfaz < -2 & svy$oedema != 1, 1, 2)

 svy$suw <- ifelse(svy$wfaz < -3 & svy$oedema != 1, 1, 2)

 head(svy)

Alternatively we may apply the case definitions and the exclude children with oedema:

 svy$tuw <- ifelse(svy$wfaz < -2, 1, 2)

 svy$muw <- ifelse(svy$wfaz >= -3 & svy$wfaz < -2, 1, 2)

 svy$suw <- ifelse(svy$wfaz < -3, 1, 2)

 svy$tuw <- ifelse(svy$oedema == 1, NA, svy$tuw)

 svy$muw <- ifelse(svy$oedema == 1, NA, svy$tuw)

 svy$muw <- ifelse(svy$oedema == 1, NA, svy$tuw)

 head(svy)

Z.4 Saving the dataset

You will usually want to save a dataset once you have calculated and added z-scores and applied case-
definitions.

It is simple to save the dataset with the new variables in a comma-separated-value (CSV) text file using
the write.table() function:

 write.table(x = svy, file = "z.ex01.zscores.csv", sep = ",", quote = FALSE,

 row.names = FALSE, fileEncoding = "ASCII")

Before you use the added indices or case-definitions you should check for outliers and implausible
values using the methods outlined in Section 9 of the NIPN anthropometry data quality toolkit called
Identifying outliers using flags.

1 Global is a direct use of the French word ‘globale’ which means overall or total

 134

Z.5 Troubleshooting addWGSR()

Do not edit commands in a text editor such as Microsoft Word ® as it can introduce characters and
symbols that may not be recognised by R. Use a plain text editor such as WordPad orNotepad++ on
Windows; EMACS, VIM, or Scintilla on Linux; BBEdit on MacOS; or the editor provided by your
preferred R environment (e.g. RStudio).

Here are some things to check if you experience difficulties using the addWGSR() function:

Make sure you have loaded the addWGSR() function. An error message such as:

Error in addWGSR(data = svy, sex = "sex", firstPart = "weight", :
 could not find function "addWGSR"

means that the addWGSR() function has not been loaded.

Make sure all variables are recorded using the required units (see Table Z1). Transform
variables to the required units if necessary.

Make sure you have specified the essential parameters correctly. An error message such as:

 Error in addWGSR(sex = "sex", firstPart = "muac", :
 argument "data" is missing, with no default

means that you have failed to specified a required parameter (data in this example).

An error messages such as:

 Error in (function(x, i, exact) if (is.matrix(i)) :
 object 'muac' not found

is usually due to a column being specified without enclosing its name in double quote (")
characters (specifying muac instead of "muac" in this example).

An error message such as:

Error in if (is.na(sex) | is.na(firstPart) | is.na(secondPart)) { :
 argument is of length zero
In addition: Warning message:
In is.na(firstPart) :
 is.na() applied to non-(list or vector) of type 'NULL'

is usually due to a misspelled column name.

An error message such as:

 Error in index %in% c("bfa", "hca", "hfa", "lfa", "mfa" :
 object 'mfa' not found

is usually due to specifying index without enclosing double quotes.

Check that columns are of the correct type. The addWGSR() assumes that all columns contain
numeric data and can produce incorrect results if this not the case.

If all z-scores are NA then you should check that the required data is present in the dataset,
check that you have specified the column names correctly, check that index is specified
correctly, and check the units used in the data.

Make sure that you have used "plain" quotes not “smart” quotes around parameter names.

If you cannot find a solution to a problem with addWGSR() then you should contact the Global Support
Facility for the NIPN initiative for assistance:

 gsf_nipn@agropolis.fr

 135

Z.6 References

WHO (2006a). WHO Child Growth Standards. Length/height-for-age, weight-for-age, weight-for-length,
weight-for-height and body mass index-for-age. Methods and development, World Health Organization,
Geneva.

WHO (2006b). WHO Child Growth Standards. Head circumference-for-age, arm circumference-for-age,
triceps skinfold-for-age, and subscapular skinfold-for-age. Methods and development, World Health
Organization , Geneva.

de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007). Development of a WHO
growth reference for school-aged children and adolescents, Bulletin of the World Health Organization,
85: 660-7

 136

GSF-NIPN
Agropolis International
1000 avenue Agropolis

34394 Montpellier cedex 5
France

www.nipn-nutrition-platforms.org
gsf_nipn@agropolis.fr

Summary

This document has been commissioned by the Global Support Facility for the

National Information Platforms for Nutrition initiative. It presents a set of practical

analytical methods that can be applied to variables in datasets to assess their

quality. An index of data quality that both describes and scores the quality of the

data is also presented. The focus of this toolkit is on data required to assess the

anthropometric status of humans, such as measurements of weight, height or

length, mid upper-arm circumference (MUAC), sex and age. However, many of

presented methods could be applied to other types of data. Additional toolkits

may be prepared to examine other variables or other types of variables. The

material is intended to provide a practical or “hands on” introduction to assessing

data quality and is presented as a series of computer-based exercises.

National Information
Platforms for Nutrition

National Information Platforms for Nutrition is an initiative

of the European Commission’s Directorate General for

Cooperation and Development, also supported by the

United Kingdom Department for International

Development and the Bill & Melinda Gates Foundation.

http://www.nipn-nutrition-platforms.org/

