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1. Introduction 
 
This document was created to support the training module on anthropometric data quality for NIPN 
teams and it is based on the Toolkit for assessing the quality of anthropometry data that Mark Myatt 
created for NIPN in 2017.1 It summarizes the set of practical analytical methods that were explained in 
the toolkit without the detailed guidelines to implement them in R software (only the main functions 
are shown) and takes also into account the “Recommendations for improving the quality of 
anthropometric data collection, analysis and reporting” developed by the Working Group on 
Anthropometric Data Quality for the Technical Expert Advisory Group on Nutrition Monitoring (TEAM). 
2 
 
This document is meant to support the trainees of the NIPN´s training module once they have completed 
their training. As the original toolkit it focuses on data required to assess the anthropometric status of 
humans, such as measurements of weight, height or length, mid upper-arm circumference (MUAC), sex 
and age.  Many of the methods can be applied to other types of data.   
 

 
 

2. The NIPN´s training module 
 
The training module can be accesses here: 
 
http://www.nipn-nutrition-platforms.org/NIPN-training-module-on-anthropometric-data-quality  
 
It includes power point presentations, exercises, tools, guides for the facilitators and additional 
readings. It is designed over three days but can be adapted depending the needs of the participants. It 
also includes a take home exercise than should be sent back to the trainer in the month following the 
workshop 
 

Day 1: overview of nutrition and survey methodologies 
 

The objective day 1 is to develop a shared understanding of the methodologies and field work practices 
of the major surveys that collect anthropometric data including, for each survey, its purpose as well as 
its training, standardization, sampling, data collection, data cleaning, processing, analysis, reporting, and 
data-sharing. It contains 6 sessions: 
 

 Session 1: Introduction and welcome (45min) 
 Session 2: pre-training assessment (15 min) 
 Session 3:  Nutrition overview, indicators and data: routine and assessments (2h) 
 Session 4: Main nutrition surveys methodologies and bias (1 hour and 15 min) 
 Session 5: Survey procedures, errors, data quality and reports (1 hour) 
 Session 6: Quiz and day one wrap up (15 min) 

 
 

Day 2: main tests to evaluate data quality 
 
Here we want all participants to experiment on their own with the most common tests used to 
evaluate anthropometric data quality.   
 
 

                                                             
1 Mark Myatt. Toolkit for assessing the quality of anthropometry data. Draft Version – December 2017 
 
2 Working Group on Anthropometric Data Quality for the Technical Expert Advisory Group on Nutrition 
Monitoring (TEAM). Recommendations for improving the quality of anthropometric data collection, analysis and 
reporting. Draft version – January 2019 

http://www.nipn-nutrition-platforms.org/NIPN-training-module-on-anthropometric-data-quality
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 Session 1: Introduction (30 min) 
 Session 2: Data quality check (2h) 
 Session 3:  Survey data quality: sampling and population (1h 45 min) 
 Session 4:  Basic Anthropometric data quality checks (2h)  
 Session 5:  Extra Anthropometric data quality checks (1h) 
 Session 6:  Day wrap (15 min) 

 

Day 3/Module 3: Expert opinions and forming a decision 
 Session 1: Review of module 2 (30 min) 
 Session 2: Data quality checks in different surveys (2h) 
 Session 3: Interpreting a report (1h 45 min)  
 Session 4: Decision tree (1h and 15 min) 
 Session 5: Home exercise (30 min) 
 Session 6: Port-training agenda and satisfaction survey (30 min) 

 
This user guide focuses on the test explained during day 2. 
 
 
3. Checking completeness of data, ranges and legal values 
 
Checking that data are within an acceptable or plausible range is an important basic test to apply to 
quantitative data. Checking that data are recorded with appropriate legal values or codes is an important 
basic check to apply to categorical data. 
 
3.1 Checking quantitative data 
 
For example if we look at the following data from a SMART survey in Angola. 
 

    age sex weight height  muac oedema 
 33  24   1    9.8   74.5 180.0      2 
 93  12   2    6.7   67.0  96.0      1 
126  16   2    9.0   74.6 999.0      2 
135  18   2    8.5   74.5 999.0      2 
194  24   M    7.0   75.0  95.0      2 
227   8   M    6.2   66.0  11.1      2 
253  35   2    7.6   75.6  97.0      2 
381  24   1   10.8   82.8  12.4      2 
501  36   2   15.5   93.4 185.0      2 
594  21   2    9.8   76.5  13.2      2 
714  59   2   18.9   98.5 180.0      2 
752  48   2   15.6  102.2 999.0      2 
756  59   1   19.4  101.1 180.0      2 
873  59   1   20.6  109.4 179.0      2 

 
We can see that some MUAC  values are extremely impossible. 

 
    age sex weight height  muac oedema 
126  16   2    9.0   74.6 999.0      2 
135  18   2    8.5   74.5 999.0      2 
227   8   M    6.2   66.0  11.1      2 
381  24   1   10.8   82.8  12.4      2 
594  21   2    9.8   76.5  13.2      2 
752  48   2   15.6  102.2 999.0      2 

 
The intention was that the muac variable records mid-upper-arm-circumference (MUAC) in mm. There 
are some impossibly small (i.e. 11.1 , 12.4 , and 13.2 ) and impossibly large values (i.e. 999.0 ).  
 



 

 5 

The three impossibly small values are probably due to data being recorded in cm rather than mm. It is 
probably safe to change these three values to 111, 124, and 132.  The three 999.0  values are missing 
values coded as 999.0 . It is usually better to identify and edit these extreme outliers. 
 
 
In R, you can use the “read .table () ” function to easily import comma-separated-value (CSV) files. For 
example you can read the exercise 1 of the day 2 of the training and store it in the “svy ” variable with 
the following command: 
 
svy <- read.table("ex01.csv", header = TRUE, sep = ",") 
 
Now we can use the summary()  function to examine the range and other summary statistics of a 
quantitative variable: 
 

summary(svy$muac) 

 
This returns: 
 

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
11.1   128.0   139.0   140.3   148.0   999.0 

 
A graphical examination can also be made simply with: 
 

boxplot(svy$muac, horizontal = TRUE, xlab = "MUAC (mm)", frame.plot = FALSE) 

 
These tools can help to identify impossible data. Other functions explained in more detailed can be found 
in the aforementioned Mark Myatt´ Toolkit for assessing the quality of anthropometry data. 
 
3.2 Completeness 
 
It is always necessary to ensure the completeness of the data collected since missing data can introduce 
bias. Missing data is often not randomly missed. In a survey often the most distant houses or the most 
complicated children to be measured are missing. This can lead to bias and non-representativeness. 
Assessing the completeness of reporting provides confidence in the survey and its 
implementation  
 
It is easy to measure and results can be presented as percentage of missing data. Proportion of missing 
data for all variables (age, sex, weight…) including those used in the calculation of anthropometric z-
scores should always be presented. 
 
In our example in R, if you know that 999 was used to identify missing values you can use the following 
code to see how many records have a missing MUAC 
 

sum(svy$muac == "999") 

 
The answer will be 3 
 

 
4. Sex ratio 
 
The male to female sex ratio test checks whether the ratio of the number of males to the number of 
females in a survey sample is similar to an expected ratio. The expected male to female sex ratio can be 
calculated from census or similar data. If there is no expected value then it is usually assumed that there 
should be equal numbers of males and females in the survey sample. This is usually true for children 
and young adults but may not be true for older adults. 
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4.1 Sex ratios in children 
 
From census data from Afghanistan we observe that there are about 2.658 million boys and 2.508 
million girls aged between zero and four years in Afghanistan (2012 estimates). 
 
The male to female sex ratio can be calculated as follows: 
 

2.658 / 2.508 

 
which gives: 
 

1.059 

 
It is often easier to work with the proportion of the population that is male: 
 

2.658 / (2.658 + 2.508) 

 
which gives: 
 

0.514 or 51.4% 

 
In the anthropometric data from a SMART survey in Kabul, Afghanistan, we see that it contains 438 
males and 435 females.  We can compare the proportion from the census to the proportion of the sample 
that is male which is:  
 

0.501 

 
 
A formal test can be made to compare the observed proportion with the proportion of the population: 
 

 Sex Ratio Test 
 
Expected proportion male = 0.5145 
Observed proportion male = 0.5017 
X-squared = 0.5225, p = 0.4698 

 
The male to female sex ratio (expressed as the proportion male) in the example data is not significantly 
different from the expected male to female sex ratio expressed as the proportion that is male. 
 
 
This formal can be done in R with the following syntax:  
 

prop.test(table(svy$sex), p = 0.514518) 

 
The NIPN data quality toolkit also provides an R language function called sexRatioTest()  that 
performs a sex ratio test: 
 

sexRatioTest(svy$sex, codes = c(1, 2), pop = c(2.658, 2.508)) 

 
 
The typical sex ratio observed at birth is 1.06:1.00 (males to females). This could be used to assess if 
selective abortion or female infanticide is taking place, although a large sample size (i.e. about n = 6200) 
is required for such a test to have sufficient power. 
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4.2 Sex ratios by age-group 
 
The sex ratio test may be performed on each age group separately. You can apply the sex ratio test to 
each age-group. You can assume that the sex ratio is independent of age or use the numbers of male and 
female children in the same age-ranges in the population taken from census data. 
 
A useful source of census data is the United States Census Bureau’s International Data Base: 
 
 https://www.census.gov/population/international/data/idb/informationGateway.php 
 
This source gives the following estimates for Afghanistan in 2016: 
 

Age  
(years) 

Number 
males 

Number 
female 

Proportion 
Male 

Proportion 
female 

Male to female 
sex ratio 

0 594,602 573,956 0.5088 0.4912 1.04:1.00 
1 550,593 533,579 0.5078 0.4922 1.03:1.00 
2 526,827 510,479 0.5079 0.4921 1.03:1.00 
3 509,048 493,185 0.5079 0.4921 1.03:1.00 
4 493,521 478,137 0.5079 0.4921 1.03:1.00 

 
 
If you perform all the tests you will find no significant differences between the observed and expected 
sex ratios. It should be noted that some (or all) of the tests might be based on small sample sizes and 
may, therefore, be able to detect only large differences. 
 
 
This can be done in R by first creating variable “ageGroupƨ to hold the age-groups 
 

svy$ageGroup <- recode(svy$age, "0:11=0; 12:23=1; 24:35=2; 36:47=3; 48:59=4") 

 
and then test the sex ratio in each age group separately: 
 

sexRatioTest(svy$sex[svy$ageGroup == 0], pop = c(594602, 573956)) 
 

sexRatioTest(svy$sex[svy$ageGroup == 1], pop = c(550593, 533579)) 
 

sexRatioTest(svy$sex[svy$ageGroup == 2], pop = c(526827, 510479)) 
 

sexRatioTest(svy$sex[svy$ageGroup == 3], pop = c(509048, 493185)) 
 

sexRatioTest(svy$sex[svy$ageGroup == 4], pop = c(493521, 478137)) 

 
 
 
4.3 Sex ratios in adults 
 
With data from children we usually expect something like a one to one male to female sex ratio. This will 
not usually be the case with adults, especially older adults. 
 
When this test show differences between the sample and the expected value in the population it could 
be due to a selection bias in the survey. For example men are more likely than women to be away from 
home during the day and a household sample taken during the day could have systematically excluded 
the more active members of the male population. 
 
Note that the sex ratio test only applies to population surveys. If surveys focus on carers of small 
children then the observed male to female sex ratio is likely to be strongly biased towards women. In 
such cases it is not sensible to apply a sex ratio test. 
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5. Age and sex distributions 
 
Age heaping is the tendency to report children's ages to the nearest year or adult’s ages to the nearest 
multiple of 5 or 10 years. Age heaping is very common. It is a major reason why data from nutritional 
anthropometry surveys are often analysed and reported using broad age-groups.  
 
 
5.1 Age and sex distributions: children’s data 
 
The commonest age-groups used with children’s data are 6 to 17 months, 18 to 29 months, 30 to 41 
months, 42 to 53 months, and 54 to 59 months (see Figure 5.1).  These are known as year-centred age-
groups. Note that the last age-group covers only six months but is nominally centred at five years. Other 
age-groups may be used for specific analyses.  
 
 

Figure 5.1  The age-groups frequently used when working with data from children. 
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5.1.1 Tabulation and visualisation 
 
A table or a graphical analysis using a population pyramid can be useful. See examples below 
 
 
 
 

 
 
 
 
This table can easily be created in R by defining the age groups as explained before and then perform a 
tabular analysis 
 

 
svy$ycag <- recode(svy$age, "6:17=1; 18:29=2; 30:41=3; 42:53=4; 54:59=5") 

 
table(svy$ycag, svy$sex) 

 
We expect there to be approximately equal numbers of children in the age-groups centred at 1, 2, 3, and 
4 years and a smaller number (i.e. about half the number in the other age-groups) in the age-group 
centred at 5 years. There should also be approximately equal numbers of males and females. This is 
what we see in the population pyramid (see Figure 5.2). 
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Figure 5.2 Pyramid plot showing distribution of (grouped) age by sex. 

 
 

 
The NIPN data quality toolkit provides an R language function called pyramid.plot()  for plotting 
population pyramids: 
 

pyramid.plot(svy$ycag, svy$sex) 

 
 
We can make the plot more informative by specifying a title and axis labels: 
 
 

pyramid.plot(svy$ycag, svy$sex, main = "Distribution of age by sex", 
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group") 

 
and applying shading: 
 
 

pyramid.plot(svy$ycag, svy$sex, main = "Distribution of age by sex", 
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group", 
 col = c("grey80", "white")) 

 
or colours: 
 
 

pyramid.plot(svy$ycag, svy$sex, main = "Distribution of age by sex", 
xlab = "Frequency (Males | Females)", ylab = "Year-centred age-group", 
 col = c("pink","lightblue")) 
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5.1.2 Simple testing 
 
It is possible to perform a formal test on the distribution of age-groups by sex. A simple test is the chi 
square test. 
 
If the p-value of the test is above 0.05 we will accept the null hypothesis that there is no significant 
association between age and sex. This is an important test as it tests whether the distribution of ages is 
similar for males and females. It does not, however, test whether the age structure in the sample meets 
expectations. This requires a test that compares the observed numbers with the expected numbers 
derived from an external source such as census data or from a demographic model. 
 
In R a chi square test can be done as follows: 
 

chisq.test(table(svy$ycag, svy$sex)) 

 
5.1.3 A model of the expected age structure 
 
A simple model-based method for calculating expected numbers is exponential decay in a population in 
which births and deaths balance each other and with a 1:1 male to female sex ratio. Under this model 
the proportion surviving in each group at each year can be calculated as: 
 

ὴ  Ὡ  
 
in which e is the base of the natural logarithm (approximately 2.7183), z is the mortality rate associated 
with each time period, and t  is time. Time (t) starts at zero for the purposes of computation. Age can be 
used as a measure of time since birth. We should use 0 for the first year-centred age-group, 1 for the 
second year-centred age-group, and so-on.  
 
A formal test would compare the observed numbers with the expected numbers.  It can be useful to 
examine observed and expected numbers graphically and not only with a formal test 
 

Figure 5.3 Observed and expected numbers of children in each age-group under the 
assumptions of a uniform sex ratio, no population growth, exponential decay, and a mortality 
rate of one death per ten thousand children per day (1 / 10,000 / day). 
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We can again calculate a Chi-squared test statistic  
 

…
έὦίὩὶὺὩὨὩὼὴὩὧὸὩὨ

ὩὼὴὩὧὸὩὨ
 

 
that in this example from Afghanistan yields a Chi-Squared test statistic of: 
 

21.43662 
 
And a  p-value of: 
 

0.000259395 

 
In this example the age distribution is significantly different from the expected numbers calculated using 
a simple demographic model. 
 
Note that we will need to specify the degrees of freedom (df ) for the Chi-Squared test as the number of 
age-groups minus one. As we have five age-groups we specify df = 4 . The degrees of freedom (df ) that 
we need to specify will depend on the number of age-groups that we use. It is always the number of age-
groups minus one. If, for example, there are ten age-groups we would need to specify df = 9 . 
 
The model is crude. Mortality is related to age. Younger children have a greater mortality risk than older 
children but an average mortality rate for children under five years is used in the calculations. A more 
sophisticated model could be used but, in many settings, we will not have the data required to apply 
such a model. 
 
It should also be noted that the sample sizes used in most survey can cause tests to yield statistically 
significant results for small differences between observed and expected numbers. 
 
The NIPN data quality toolkit provides an R function called ageChildren()  that performs the model-
based Chi-Squared test: 
 

ageChildren(svy$age, u5mr = 1) 

 
The ageChildren()  function calculates year-centred age-groups for children aged between six and 
fifty-nine months by default. This is a standard survey population and is used in SMART and many 
other surveys. The use of year-centred age-groups is also standard practice. The commands that are 
given above can, however, be adapted for use with different age-groups. 
 
5.1.4 Use of census data 
 
The use of simple demographic models is far from ideal. It is usually better to calculate the expected 
proportions from census data. A useful source of census data is the United States Census Bureau’s 
International Data Base: 
 

https://www.census.gov/population/international/data/idb/informationGateway.php 

 
The population in single year age-groups for 0, 1, 2, 3, and 4 years for Afghanistan in 2015 was: 
 

Age  Both Sexes    Males Females 
  0   1,148,379  584,276  564,103 
  1   1,062,635  539,589  523,046 
  2   1,015,688  515,793  499,895 
  3     981,288  498,365  482,923 
  4     950,875  482,926  467,949 
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We can calculate expected values from these data. These expected values can be used in a Chi-squared 
test as is illustrated above. 
 
5.1.5 The age ratio 
 
A much simpler and less problematic age-related test of survey and data quality is the age ratio test. 
 
The age ratio is defined as: 
 

ὃὫὩ ὶὥὸὭέ 
ὲόάὦὩὶ έὪ ὧὬὭὰὨὶὩὲ ὥὫὩὨ ὦὩὸύὩὩὲ φ ὥὲὨ ςω άέὲὸὬί

ὲόάὦὩὶ έὪ ὧὬὭὰὨὩὲ ὥὫὩὨ ὦὩὸύὩὩὲ σπ ὥὲὨ υω άέὲὸὬί 
 

 
In our example from Afghanistan it gives: 
 

0.8653 

 
It is often easier to work with proportions than with ratios, so we only need to calculate the proportion 
in the younger age-group which gives: 
 

0.4639 or 46.39% 

 
We can calculate an expected value using census data or a simple demographic model. The simplest 
approach is to use a standard value. SMART surveys often use the ratio 0.85:1 (SMART, 2015, p11). This 
gives a proportion of: 
 

0.4594 

 
The observed proportion (0.4639) and expected proportion (0.4594) are so similar that a formal test of 
statistical significance is not required in this case. 
 
Formal testing can be done using a Chi-squared test. In this example it returns: 
 

 1-sample proportions test with continuity correction 
 
X- squared = 0.053062, df = 1, p - value = 0.8178  

 
The age ratio in the example data is not significantly different from the expected age ratio. 
 
In R we can use the recode()  function from NIPN data quality toolkit to create the relevant age-
groups: 
 

svy$ageGroup <- recode(svy$age, "6:29=1; 30:59=2") 

 
The observed age ratio in R can be now calculated as: 
 

sum(svy$ageGroup == 1) / sum(svy$ageGroup == 2) 

 
which gives: 
 

0.8653846 

 
And a Chi-squared test in R using: 
 

prop.test(sum(svy$ageGroup == 1), sum(table(svy$ageGroup)), p = 0.4594595 ) 
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5.2 Age and sex distributions: adults and general population surveys 
 
A key test of survey quality is whether the survey data represents the population in terms of the age and 
sex distribution. We can test this by comparison with census data.   
 
For adults we can use population pyramids and the same test described for children above. 
 
 
We will use census data taken from the Wolfram|Alpha knowledge engine: 
 

http://www.wolframalpha.com/input/?i=Tanzania+age+distribution 

 
The pyramid plot produced by Wolfram|Alpha for Tanzania with data from 2010 is shown in Figure 
5.4. 
 
 
Figure 5.4 Pyramid plot of the age and sex distribution in Tanzania computed by the Wolfram|Alpha 
knowledge engine (2010 estimates) 
 

 
 
 
 
We can compare it with the pyramid of a survey from Tanzania 
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Figure 5.5 Pyramid plot of the age and sex distribution in the Tanzania survey dataset. 

 
The easiest way of checking whether the survey data represents the general population in terms of the 
age and sex distribution is to compare the observed (Figure 5.5) and expected (Figure 5.4) distributions. 
The general shapes of the two distributions are similar. Some of the lumpiness in Figure 5.5 is due to age 
heaping in the adult ages at decades and half-decades. See Figure 5.6. 
 
Figure 5.6 Age heaping in the Tanzania dataset. Age heaping at 20, 30, 40, 50, 60, 70, and 80 years can 
also be seen in Figure 5.5 and Figure 5.7. 
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A more formal test of the age structure can be made by comparing observed and expected numbers. 
 
In R that pyramid plot can be produced with: 
 

pyramid.plot(svy$ageGroup, svy$sex, main = "Age-group by sex", 
xlab = "Number (Males | Females)", ylab = "Age-group", las = 1, 

  cex.names = 0.9) 
 
And the plot in figure 5.6 with 
 

ah <- ageHeaping(svy$age, divisor = 10) 
 

plot(ah, main = "Remainder of age / 10") 
 
 
The techniques outlined in this section are illustrative. This is because many surveys, other than 
nutritional anthropometry surveys in young children, are not standardised. A survey may sample only 
women of child-bearing age, so the sample may be restricted to women aged between 15 and 45 years.  
In this case the age-structure can be examined using the techniques outlined above but it would make 
no sense to examine the sex ratio. Care should be taken when examining data from surveys that may 
have deliberately oversampled specific age-groups. 
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6. Digit preference in anthropometric measurements 
 
Measurements in nutritional anthropometry surveys are usually taken and recorded to one decimal 
place. Examples are given in Table 6.1. 
 
 
 

Table 6.1 Common measurements used in anthropometric surveys. 
 

Variable Unit Precision Example Notes 

Weight kg Nearest 0.1 kg 8.7 kg Most surveys use scales with a 0.1 kg precision. 

Height / length cm Nearest 0.1 cm 85.3 cm Height boards tend to have a 0.1 cm precision. 

MUAC 

cm Nearest 0.1 cm 13.7 cm 
MUAC may be measured and recorded in 
centimetres or millimetres. Sometimes both may 
be used in the same survey.  You will need to 
check this and recode data to use only a single 
format / precision. 

mm Nearest 1 mm 137 mm 

 
 
 
Digit preference is the observation that the final number in a measurement occurs with a greater 
frequency that is expected by chance. This can occur because of rounding, which is the practice of 
increasing or decreasing the value in a measurement to the nearest whole or half unit, or because data 
are made up. 
 
When taking and recording measurements in the field it is common for field staff to round the first value 
after the decimal point to zero or five. Measurements in whole numbers may also be rounded to the 
nearest decade (e.g. 137 mm may be rounded to 140 mm) or half-decade (e.g. 137 mm may be rounded 
to 135 mm). A small number of rounded measurements is unlikely to affect survey results. A large 
number of rounded measurements can affect survey results particularly if measurements have been 
systematically rounded in one direction. This is a form of bias. 
 
Made up data often shows digit preference with (e.g.) ”2” and “6” appearing as final digits much more 
frequently than expected. This happens because, without using a computer, a large quantity of random 
data is very much harder to make up than merely random-looking data. 
 
If there were little or no digit preference in anthropometric data then we would expect the final recorded 
digit of each measurement to occur with approximately equal frequency. We can check if digit 
preference is absent in data by testing whether this is the case. 
 
 
 
6.1 Tabulation and visualisation 
 
Create tables and graphs is an easy way to spot digit preference. See figure 6.1 
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Figure 6.1. Example (generated) data with little or no digit preference.  The dotted line shows 
expected values. 

 
The graphical analysis here is consistent with there being little or no digit preference. This was 
randomly generated data and the analysis agree with the expectation that each final digit should occur 
about 10% of the time. All we are seeing is random variation. 
 
The code to create this graphs in are is: 
 

barplot(table(finalDigits), xlab = "Final digit", ylab = "Frequency") 

 
We can add a line showing our expectation that each final digit should occur about 10% of the time: 
 

abline(h = sum(table(finalDigits)) / 10, lty = 3) 

 
6.2 A numerical analysis using the digit preference score 
 
Using a summary measure that takes the effect of sample size into account can facilitate comparisons 
across different data. A widely used method is the digit preference score (DPS). The DPS was developed 
by the World Health Organization for the MONICA project: 
 
 http://www.thl.fi/publications/monica/bp/bpqa.htm 
 
The DPS corrects the Chi-squared statistic (ɯ2) for the sample size (n) and the degrees of freedom (df) 
of the test: 
 

ὈὖὛρππ 
…

ὲ  ὨὪ
 

 
This has the effect of “desensitising” the Chi-squared test. The DPS can be used with anthropometric 
data from all types of surveys and may also be applied to clinical data. A low DPS value indicates little 
or no digit preference; a high DPS value indicates considerable digit preference. 
 
WHO has not guideline on what values of DPS are good or problematic but SMART dies and can be 
seen in Table 6.2. 
 

 

http://www.thl.fi/publications/monica/bp/bpqa.htm
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Table 6.2  Guideline thresholds for the digit preference score (SMART, 2015) 
 

DPS value Interpretation 
0 ≤ DPS < 8 Excellent 

8 ≤ DPS < 12 Good 
12 ≤ DPS < 20 Acceptable 

DPS ≥ 20 Problematic 
 
 
 
The NIPN data quality toolkit provides the R language function digitPreference()  for calculating 
the DPS: 
 
 digitPreference(svy$wt, digits = 1) 

 
Note that we specified digits = 1  when we used the digitPreference()  function for the weight 
and height data in the example DHS data. This is because these variables are measured and recorded 
to one decimal place. For MUAC  digits = 0  
 
 
 
6.3 Some warnings 
 
The material presented here has assumed that data are recorded with a fixed precision (e.g. one decimal 
place for weight and height, no decimal places for MUAC). It may be the case that data are recorded with 
mixed precision. For example, the weights of younger children may be measured using “baby scales” 
and recorded to the nearest 10 g (i.e. to two decimal places) and the weights of older children measured 
using “hanging scales” and recorded to the nearest 100 g (i.e. to one decimal place). These sorts of 
situations can be difficult to handle automatically since (e.g.) 3.1 and 3.10 are the same number and both 
will be stored in the same way. The easiest approach is to treat the data as two separate datasets when 
examining digit preference. 
 
Care should be taken to ensure that you do not mistake the limitations of the measuring instrument for 
digit preference. For example, some designs of MUAC tape can only return measurements with an even 
number for the final digit. In this case you should never see MUAC measurements with 1, 3, 5, 7, or 9 as 
the final digit. This limitation of the instrument would look like digit preference.  
 
If the MUAC was measured using a “numbers in boxes” design MUAC tape, there can only be even 
numbers in the final digit when this type of MUAC tape is used. 
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7. Age heaping 
 
Age heaping is the tendency to report children's ages to the nearest year or adults’ ages to the nearest 
multiple of five or ten years. Age heaping is very common. This is a major reason why data from 
nutritional anthropometry surveys is often analysed and reported using broad age groups. 
 
7.1 Summarising, tabulating, and visualising age data 
 
We can look again at the survey dataset from a SMART survey in Kabul, Afghanistan. The first few 
records in this dataset can be seen here: 
 

  psu age sex weight height muac oedema 
1   1   6   1    7.3   65.0  146      2 
2   1  42   2   12.5   89.5  156      2 
3   1  23   1   10.6   78.1  149      2 
4   1  18   1   12.8   81.5  160      2 
5   1  52   1   12.1   87.3  152      2 
6   1  36   2   16.9   93.0  190      2 

 
 
Now, the variable of interest is age (age in months). A graphical analysis is usually more informative 
than a tabular analysis. We expect all ages to be present with roughly equal frequency or with frequency 
reducing slowly with age due to mortality. We can see that there is marked age-heaping at 12, 18, 24, 
30, 36, and 48 months (see Figure 7.1). This is very common when age is reported by mothers. This is 
because of a tendency for mothers and other carers to round ages to whole years or half years. 
 
 

Figure 7.1 Distribution of ages in a SMART survey with age-heaping at whole and half years. 
 

 
In R a similar graph can be constructed with: 
 

barplot(fullTable(svy$age, values = 6:59), 
xlab = "Age (months)", ylab = "Frequency", las = 3, cex.names = 0.6) 

 
7.2 Age heaping in children 
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Age heaping can seriously affect survey results for indices that include an age component (e.g. height-
for-age and weight-for age). The effect is important when there is systematic rounding up or systematic 
rounding down. Systematic rounding can lead to bias. If rounding is systematically down then indices 
will be biased upwards and prevalence biased downwards. If rounding is systematically up then indices 
will be biased downwards and prevalence biased upwards. 
 
A useful way of looking at age heaping when age is recorded in months is to examine the remainders 
when the ages are divided by 12. The resulting plot is shown in Figure 7.3. 
 

 
Figure 7.3  Age heaping at whole and half years in a SMART survey. The dotted line shows 
expected numbers. 

 
 

The NIPN data quality toolkit provides an R language function called ageHeaping()  that performs 
this age-heaping analysis. It can be applied to our exercises as follows:  
 

ageHeaping(svy$age) 

 
This returns: 
 

 Age-heaping Analysis 
 
data: Remainder of svy$age / 12 
X-squared = 214.9588, df = 11, p-value = 0.0000 

 
The output of the ageHeaping()  function can be saved for later use: 
 
 ah12 <- ageHeaping(svy$age) 
 

And the saved results may also be plotted as in the figure above 
 

plot(ah12, main = "Age-heaping (remainder of age / 12)") 
 

 
 

7.3 Age heaping in adults 
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Using ten and five as divisors can be useful when dealing with data for adults in which ages are recorded 
in whole years. Care should be exercised when specifying the divisor  to use in the analysis of age 
heaping.  Not all calendars use base ten. Amongst Han Chinese, for example, age heaping may occur with 
a twelve-year cycle corresponding to preferred animal years in the Chinese calendar. An analysis of age 
heaping that concentrates on specific digits (e.g. zero and five) or on decimal intervals will not be 
appropriate in all populations. It is advisable, therefore to use simple tabulation and visualisation 
techniques to heap data first and then decide on an appropriate divisor .  
 

Figure 7.5  Age heaping at decades and half-decades in a RAM-OP survey of adults aged 60 
years and older. 

 
In this survey using a divisor  of 10 would be appropriate. There is pronounced age heaping at 
decades and, to a lesser extent, half-decades in these data (see Figure 7.6). 
 

Figure 7.6  Age-heaping at decades and half-decades in a RAM-OP survey. The dotted line 
shows expected numbers. 
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The ageHeaping() function in R explained above assumes that you want to examine the remainder 
after dividing by twelve. This is useful when working with ages that are recorded in months. It may 
also be useful to use other divisors, as 10 in this case: 
 

ah10 <- ageHeaping(svy$age, divisor = 10 ) 

 
 

8. Identifying outliers using flags  
 
Flagging is a way of identifying records for which there is a strong likelihood that values of 
anthropometric measurements or the age of the child are incorrect. Records can then be checked and 
corrected, or censored (i.e. excluded), from subsequent analyses. Flagging is a process of checking 
whether values of anthropometric indices are outside a given range. 
 
Flagging is usually applied to height-for-age z-scores (HAZ), weight-for-age z-scores (WAZ), weight-for-
height z-scores (WHZ), and BMI-for-age z-scores (BAZ) calculated from data collected during nutritional 
anthropometry surveys. The flagging process can be easily applied to other variables. 
 
Two flagging criteria for anthropometric indices are in common use. These are the WHO flagging criteria 
and the SMART flagging criteria. Both methods flag records in which one or more anthropometric 
indices are more than a certain distance either side of a reference value. The two methods are 
summarised in Table 8.1. 
 
 
Table 8.1. WHO and SMART flagging criteria (SMART, 2012; WHO, 2009; WHO, 2011) applied to the 
anthropometric indices of children, with the old criteria applied to the NCHS references. 
 

  WHO  SMART  NCHS 

  Reference mean 
(zero) 

 Survey mean 
(observed) 

 Reference mean 
(zero) 

 
Anthropometric index 

 Lower 
limit 

Upper 
limit 

 Lower 
limit 

Upper 
limit 

 Lower 
limit 

Upper 
limit 

          Weight-for-length  -5 +5  -3 +3  -4 +6 

Weight-for-height  -5 +5  -3 +3  -4 +6 

Length-for-age  -6 +6  -3 +3  -6 +6 

Height-for-age  -6 +6  -3 +3  -6 +6 

Weight-for-age  -6 +5  -3 +3  -6 +6 

BMI-for-age  -5 +5  NA* NA*  -5 +5 

MUAC-for-age  -5 +5  NA* NA*  -5 +5 

Triceps-for-age  -5 +5  NA* NA*  -5 +5 

Subscapular skinfold-for-age  -5 +5  NA* NA*  -5 +5 

Head circumference-for-age  -5 +5  NA* NA*  -5 +5 
* NA = not available 

 
Applying flagging criteria is a matter of checking that individual values of these indices are within the 
lower and upper limits shown in Table 9.1. Values that are outside of these limits are flagged. The WHO 
ranges for the other anthropometric indices (MUAC-for-age, triceps skinfold-for-age, subscapular 
skinfold-for-age and head circumference-for-age) are -5 to +5 z-scores.  These indices are calculated by 
WHO Anthro software but not by ENA for SMART. 
 
The WHO criteria are simple biologically plausible ranges around the reference mean of zero. If, for 
example, a value for WHZ is below −5 or above +5 then the record is flagged to indicate a likely problem 
with WHZ. This will usually be caused by an erroneous value of weight or height. Note that values 
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outside these flagging limits may be observed in children admitted into therapeutic feeding 
programmes. 
 
SMART criteria are more complicated. They require the mean value of the index to be calculated from 
the survey data. This is then used as the reference value and then 3 z-scores are added or subtracted to 
create a range. For example, if a value of WHZ is below the “mean WHZ – 3”  or above  the “mean WHZ 
+ 3”  then the record is flagged to indicate a likely problem with WHZ. 
 
For example, a mean WHZ of −1.15 gives lower and upper SMART flagging limits of: 
 
 −1.15 – 3 = −4.15 
 
and: 
 
 −1.15 + 3 = +1.85 
 
respectively. These limits may incorrectly flag biologically plausible values. See Figure 8.1. 
 
 
 

Figure 8.1.  Example of WHO and SMART flagging criteria for weight-for-height z-scores 
(WHZ). WHO flagging criteria are wider for height-for-age z-scores (HAZ) and weight-for-age 
z-scores (WAZ) (see Table 9.1) 
 

 

 
 

 
 
The WHO and SMART flagging criteria will flag different but overlapping sets of measurements. This 
means that survey results can be affected by the flagging criteria used. This is because the prevalence of 
an indicator describes the proportion of values in the one of the “tails” of the distribution of an index 
(see Figure 8.2). 
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The SMART flagging criteria will usually flag more records than the WHO flagging criteria. This will act 
to reduce the estimated prevalence (see Figure 8.2). This will occur more often when the prevalence of 
severe forms of undernutrition is high. 
 
 

Figure 8.2. Prevalence is in the “tails” of the distribution.  The estimated prevalence is shown 
for cases defined using −3 z-scores below the reference median (i.e. zero). The red bars show 
the cases remaining after “outliers” to the left have been censored. The area covered by the red 
bars represents the estimated prevalence after flagged values have been censored. The 
estimated prevalence is reported below each plot as p(z < −3). 

 
 

 
 

There are some issues to take into account when using the SMART flagging criteria: 
 

1. Flagging is about detecting outlier values. The SMART flagging criteria use distance from the 
sample mean, but the value of the mean can be strongly influenced by the presence of outliers.  
 

2. SMART flagging criteria are supposed to define outliers using statistically plausible limits. The 
underlying principle is that, for a normally distributed variable, we expect 99.87% of all values 
to lie within three sample standard deviations of the sample mean. If we exclude records with 
values more than three standard deviations from the mean then we would incorrectly flag very 
few records (i.e. 0.13% of the total) as problematic. The SMART method assumes that the 
distribution of each anthropometric index in a population is always perfectly normal and that 
the standard deviation is always exactly one. This assumption is almost always violated. If it is 
violated then the use of the SMART flagging criteria may lead to records being flagged 
inappropriately.  
 

3. Wide-area surveys such as MICS and DHS will usually collect data from many populations. Each 
population may have different distributions of anthropometric indices and different prevalence 
of anthropometric indicators. In this case the mean of the entire survey sample will not be a 
suitable reference mean and the assumed standard deviation (i.e. SD = 1) will usually be too 
narrow to set limits that define statistical outliers. This is illustrated in Figure 8.3. Stratum or 
district specific means should be used instead of whole sample means. 
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Figure 8.3. Combining populations with different means and similar standard deviations 
increases the overall standard deviation and may cause SMART flagging criteria to flag records 
inappropriately. Flagged records are shaded red. 

 

 
If SMART flagging criteria have already been applied to data and the flagged records have been removed 
from the dataset, then a subsequent application of the SMART flagging criteria will tend to flag additional 
records. SMART flagging criteria should, therefore, only be applied to raw data. Do not apply SMART 
flagging criteria to data from which flagged records have been removed. 
 
It is important to note that only one set of flagging criteria, either WHO or SMART, should be used at any 
one time. 
 
The WHO and SMART flagging criteria are designed to be applied to samples of children measured in 
surveys. They should not be applied to samples of severely malnourished or sick children. 
 
Software such as ENA from SMART, EpiInfo, WHO Anthro, WHO AnthroPlus, and scripts or macros for R, 
SAS, SPSS, and STATA provided by the WHO are frequently used to calculate anthropometric indices 
from anthropometric data and then apply flagging criteria to the data. It is quite common to receive data 
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to which flagging criteria have already been applied and contain one or more flag variables. You may 
use these flags if you are sure which flagging criteria have been applied. If you are unsure which flagging 
criteria have been applied then you should apply your flagging criteria of choice. You may also need to 
recalculate anthropometric indices using WHO reference values if they were calculated using NCHS, 
CDC, or local growth references. 
 
 
 
Applying flagging criteria in R is straightforward. We can first create a column that will contain the flag 
code and set this to zero (i.e. no flags) for all records: 
 

svy$flag <- 0 
 

 

Then we apply the flagging criteria for each index we want to analyse. For example to apply the WHO 
flagging criteria to the HAZ index: 
 

svy$flag <- ifelse(!is.na(svy$haz) & (svy$haz < -6 | svy$haz > 6), 
svy$flag + 1 , svy$flag) 

 
This can be read as “if HAZ is not missing and HAZ is below -6 or HAZ is above +6 then add 1 to the flag 
variable else leave the flag variable unchanged”. 
 
 
Be careful when using the < comparison operator with negative numbers. Always insert a space 
between the < and Ƶ characters. R interprets <-  as an assignment operator and may produce 
unexpected and unwanted results without issuing a warning or error message. 
 
 
The number of flagged records can be found using: 
 

table(svy$flag != 0)["TRUE"] 
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9. Assessing the distribution of anthropometric variables, indices, and indicators 
 
In this section we will examine the distribution of anthropometric variables (e.g. weight, height, and 
MUAC) and  anthropometric indices (e.g. WHZ, HAZ, and WHZ). 
 
9.1 Graphical and numerical summaries 
 
Numerical summaries are useful for checking that data are within an expected range. Graphical methods 
are often more informative than numerical summaries. A key graphical method for examining the 
distribution of a variable is the histogram.  For example figure 9.1  
 

Figure 9.1 A histogram showing the distribution of the weight  variable in the example dataset 
 
 

 
 

The summary()  function in R provides a six-figure summary (i.e. minimum, first quartile, median, 
means, third quartile, and maximum) of a numeric variable. For example: 
 

summary(svy$weight) 

 
 
The six-figure summary does not report the standard deviation.  The sd()  function in R calculates the 
standard deviation. For example: 
 

sd(svy$weight) 

 
The sd()  function may return NA. This will happen if there are missing values in the specified variable. 
 
If this happens you can instruct the function to ignore missing values: 
 

sd(svy$weight, na.rm = TRUE) 
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The hist ()   is useful to create histograms  
 

hist(svy$weight) 

 
You can also look at the data for males and the data for females using separate histograms: 
 

hist(svy$height[svy$sex == 1]) 
 

hist(svy$height[svy$sex == 2]) 
 
or using a box-plot: 
 

boxplot(svy$height ~ svy$sex, names = c("M", "F"), 
xlab = "Sex", ylab = "Height (cm)", main = "Height by sex") 

 
 
9.2 Normal distributions 
 
With anthropometric variables and indices we usually expect a symmetrical (or nearly symmetrical) 
“bell-shaped” distribution. The variables and indices of interest are usually HAZ, MUAC, WAZ and WHZ. 
Examples of  these plots are shown in Figure 9.2. 
 

Figure 9.2 : Histograms showing the distribution of anthropometric indices in an example survey 
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All of these plots show nearly symmetrical “bell-shaped” distributions. The ideal symmetrical "bell-
shaped" distribution is the normal distribution. 
 
There are a number of ways of assessing whether a variable is normally distributed. The first way of 
assessing whether a variable is normally distributed is a simple “by-eye” assessment as we have already 
done using histograms. 
 
These plots are shown in Figure 9.3. All variables appear to be approximately normally distributed. 

 
Figure 9.3 : Histograms of anthropometric indices with Normal curves superimposed 

 

 
 
We have just seen how to create a simple histogram in R: 
 

hist(svy$haz) 

 
You can specify a different set of  breaks  for the hist()  function to use. For example: 
 
 hist(svy$haz, breaks = "scott") 
 
calculates intervals using the standard deviation and the sample size. This: 
 
 hist(svy$haz, breaks = "FD") 
 
calculates intervals using the inter-quartile range. This: 
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 hist(svy$haz, breaks = 40) 
 
will use about 40 intervals. 
 
The NIPN data quality toolkit provides an R language function called histNormal()  that can help with 
“by-eye” assessments by superimposing a normal curve on a histogram of the variable of interest: 
 

histNormal(svy$muac) 

Changing the breaks  parameter may make a histogram easier to “read”. For example:  
 

histNormal(svy$haz, breaks = 15) 

 
 
Another graphical method for assessing whether a variable is normally distributed is the normal 
quantile-quantile plot.  This plot is shown (with annotations) in Figure 9.4. In this example the tails of 
the distribution contain more cases than would be expected in a perfectly normally distributed 
variable. 
 

 
Figure 9.4 : Annotated normal quantile-quantile plot of the whz variable in the example dataset 
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The NIPN data quality toolkit provided a helper function called qqNormalPlot()  that produces a 
slightly enhanced normal quantile-quantile plot: 
 

qqNormalPlot(svy$whz) 

 
 
A final way of assessing normality is to use a formal statistical significance test. The preferred test is the 
Shapiro-Wilk test of normality.  When applied to our example here these tests indicate that muac, haz, 
and whz are significantly non-normal. Examination of the histograms and the normal quantile-quantile 
plots show that the deviations from normality in these indices are not particular marked. All indices 
have symmetrical, or nearly symmetrical, “bell-shaped” distributions. 
 
 
In R is is very simple to perform a Shapiro-Wilk test 
 

shapiro.test(svy$waz) 

 
 
We need to be careful when using significance tests such as the Shapiro-Wilk test of normality because 
the results can be strongly influenced by the sample size. Small sample sizes can lead to tests missing 
large effects and large sample sizes can lead to tests identifying small effects as highly significant.  The 
analysis above found some highly significant but small deviations from normality that would probably 
not have been detected by a significance test if a smaller sample size had been used. 
 
If a distribution appears to be normal (i.e. has a symmetrical, or nearly symmetrical, “bell-shaped” 
distribution) then it is usually safe to assume normality and to use statistical procedures that assume 
normality. Formal tests for normality can be misleading when sample sizes of more than a few hundred 
cases are used. Graphical methods are not very useful when sample sizes are small. Formal test are not 
very useful when sample sizes are large. The sample sizes of most anthropometry surveys will be large 
enough to cause formal tests for normality to identify small deviations from normality as highly 
significant. 
 
 
 
 
9.3 Skew and kurtosis 
 
 
Skew is a measure of the asymmetry of a distribution about its mean. Skew can be zero, positive, or 
negative. Zero skew is found when the distribution is perfectly symmetrical. Positive skew is found 
when there is a long right tail to the distribution and the mass of the distribution is concentrated to the 
left. Negative skew is found when there is a long left tail to the distribution and the mass of the 
distribution is concentrated to the right. We can usually see skew in histograms. We can also calculate a 
skewness statistic and test if this is significantly different from zero. 
 
Kurtosis is a measure of how much a distribution is concentrated about the mean. Kurtosis can be zero, 
positive, or negative. Zero kurtosis is found when a variable is normally distributed. Positive kurtosis is 
found when the mass of the distribution is concentrated about the mean and there are very few values 
far from the mean. Negative kurtosis is found when the mass of the distribution is concentrated in the 
tails of the distribution. We can usually see kurtosis in histograms. We can also calculate a kurtosis 
statistic and test if this is significantly different from zero. 
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In the example below with MUAC from a nutrition There is positive skew and negative kurtosis. 
Neither is significantly different from zero. 
 
  Skewness and kurtosis 
 

 Skewness = +0.0525 SE = 0.0828 z = 0.6348 p = 0.5256 
 Kurtosis = -0.2412 SE = 0.1653 z = 1.4586 p = 0.1447 

 
 
When looking at the haz variable in the same example survey there is a positive skew and a positive 
kurtosis. The skew is significantly different from zero and can be seen in the histogram in figure 9.3 
 
  
  Skewness and kurtosis 
 

 Skewness = +0.3074 SE = 0.0828 z = 3.7149 p = 0.0002 
 Kurtosis = +0.2074 SE = 0.1653 z = 1.2545 p = 0.2097 

 
 
Care should be exercised when using statistical significance tests to classify data as “problematic”. The 
use of thresholds and ranges for skew and kurtosis statistics is usually a better approach than relying 
on tests of statistical significance. Significance tests can be strongly affected by sample size. Small sample 
sizes can lead to tests missing large effects and large sample sizes can lead to tests identifying small 
effects as highly significant. If a distribution appears to be normal (i.e. has a symmetrical, or nearly 
symmetrical, “bell-shaped” distribution) then it is usually safe to assume normality and to use statistical 
procedures that assume normality. The data we see may be representative of reality even when it fails 
a test for normality. 
 
Tests for normality are useful when selecting statistical methods that rely on normality. They are less 
useful for determining data quality. If data follows a symmetrical, or nearly symmetrical, “bell-shaped” 
distribution then it will usually safe to use. 
 
 
The NIPN data quality toolkit provides an R language function called skewKurt()  that calculates 
skewness and kurtosis statistics and tests whether they differ significantly from zero. Here we apply 
the skewKurt()  function to the muac variable: 
 
 skewKurt(svy$muac) 
 
 
9.4 Deviation from normality 
 
Some anthropometric survey methods (e.g. SMART) use deviations from perfect normality as an 
indicator of poor data quality. But deviations from normality are not necessarily due to poor quality 
data; they can be due to sampling a mixed population.  
 
See Figure 9.5. In this case the mixture was already known. There are a number of methods for revealing 
the underlying mixture when the components of the mixture are unknown. These techniques are not 
covered in this toolkit.  
  



 

 34 

Figure 9.5 : Example mixture of two normal distributions yielding a non-normal distribution. 
Dark grey is used to represent g1, light grey is used to represent g2, and middle grey is used to 
represent the overlap of g1 and g2. 

 
These situations may happen when we survey communities from different livelihood zones (i.e. agro-
pastoral, pastoral, and riverine agrarian) in the rural areas of one district, when we mix urban and rural 
areas or camps and host populations. And especially in national surveys 
 
We expect to see small deviations from normality in most survey datasets. This will often be the case 
when a survey takes a sample of subjects over a wide area covering, for example, several agro-ecological 
zones, socio-economic groups, or ethnic groups. This will almost always be the case, particularly with 
large surveys such as DHS, MICS, and national SMART surveys. 
 
Another reason for non-normality is that one (or more) of the survey teams has a systematic bias in 
making a measurement. Identifying the “offending” survey team by examining and testing for normality 
separately in all combinations of data from n ɀ 1 survey teams can be attempted. If (e.g.) there were 
three teams then we would need to separately test data from: 
 

Team 1 and Team 2 (Team 3 excluded) 
 

Team 1 and Team 3 (Team 2 excluded) 
 

Team 2 and Team 3 (Team 1 excluded) 
 
to see if the deviation from normality disappears when a particular team’s data are excluded. There is, 
however, a problem with this type of analysis. In cluster-sampled surveys, teams often sample adjacent 
primary sampling units (clusters). When this occurs the “exclude one team” analysis cannot distinguish 
between differences due to spatial heterogeneity (i.e. patchiness) and differences due to a team having 
a systematic measurement bias. 
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9.5 The standard deviation and alternatives 
 
The standard deviation is sometimes considered to be useful measure of data quality when applied to 
z-scores.  We can calculate the standard deviation of whz in our Afghanistan example. This returns: 
 

SD= 1.323469 

 
SD may produce misleading values if applied to raw data. This procedure should only be applied to 
cleaned data from which erroneous data and flagged records have been censored. 
 
SMART data quality guidelines (SMART, 2015) state that the acceptable range for the standard deviation 
of the weight-for-height z-scores (whz) is 0.8 to 1.2 when SMART flagging criteria have been applied and 
flagged records have been censored. However this standard is not recognised and there are not WHO 
standards for SD. Standard deviations outside this range are considered to indicate poor survey quality. 
Note that SMART does not define thresholds for anthropometric indices other than for weight-for-
height z-scores. It is important to note that a standard deviation above 1.2 may be due to sampling from 
a mixed population rather than due to poor data quality. 
 
The problem with using the standard deviation with raw data is that it is a non-robust statistic. This 
means that it can be strongly influenced by outliers. For example the SD deviation of these numbers: 
 
 (4.55, 5.93, 2.68, 5.61, 3.53, 4.78, 3.60, 5.82, 4.41, 5.42 

 
returns: 
 

SD = 1.097533 

 
Adding a single outlier (e.g. data entered as 7.84  rather than as 4.78 ): 
 

(4.55, 5.93, 2.68, 5.61, 3.53, 7.84 , 3.60, 5.82, 4.41, 5.42) 

 
returns: 
 

SD = 1.496963 

 
In this example a single outlier has strongly influenced the standard deviation. 
 
And alternative is the median absolute deviation (MAD). The MAD is defined as the median of the 
absolute deviations from the median. It is the median of the absolute values of the differences between 
the individual data points and the median of the data: 
 

ὓὃὈ άὩὨὭὥὲȿὼ άὩὨὭὥὲὼȿ 
 
The calculated MAD is adjusted to make it consistent with the standard deviation: 
 

„ ὯϽὓὃὈ 
 
where k is a constant scaling factor, which depends upon the distribution. For the normal distribution: 
 

Ὧ ρȢτψςφ 
 
This is a more robust estimate of the standard deviation but beyond this toolkit. This estimator can be 
used when a sample is taken from a mixed population (this is almost always the case) and when the 
distribution has “fat” or “heavy” tails. 
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9.6 Measures of dispersion 
 
Measures of dispersion summarise how cases (e.g. children classified as wasted, stunted, or 
underweight) are distributed across a survey’s primary sampling units (e.g. clusters). 
 
Here we are interested in how cases are distributed across the primary sampling units. There are three 
general patterns. These are random, clumped, and uniform. 
 
We can identify the pattern to which the example data most likely belongs using an index of dispersion. 
 
The simplest index of dispersion, and the one most commonly used, is the variance to mean ratio: 
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The interpretation of the variance to mean ratio is straightforward: 
 
 Variance to mean ratio ≈ 1 Random 
 
 Variance to mean ratio > 1 Clumped (i.e. more clumped than random) 
 
 Variance to mean ratio < 1 Uniform (i.e. more uniform than random) 
 
 
The value of the variance to mean ratio can range between zero (maximum uniformity) and the total 
number of cases in the data (maximum clumping). Maximum uniformity is found when the same number 
of cases is found in every primary sampling unit. Maximum clumping is found when all cases are found 
in one primary sampling unit. 
 
 
It is not difficult to calculate this in R. For example we can use the data from exercise 4 that already 
contains the WH, HA and WA Z scores and the primary sampling units (PSU) 
 
First we will retrieve the survey dataset: 
 
 svy <- read.table("ex04.csv", header = TRUE, sep = ",") 
 
We will apply WHO flagging criteria to the data: 
 
 svy$flag <- 0 
 

 svy$flag <- ifelse(!is.na(svy$haz) & (svy$haz < -6 | svy$haz > 6), 
  svy$flag + 1, svy$flag) 
 

 svy$flag <- ifelse(!is.na(svy$whz) & (svy$whz < -5 | svy$whz > 5), 
  svy$flag + 2, svy$flag) 
 

 svy$flag <- ifelse(!is.na(svy$waz) & (svy$waz < -6 | svy$waz > 5), 
  svy$flag + 4, svy$flag) 

 
We should exclude flagged records: 
 
 svy <- svy[svy$flag == 0, ] 

 
We will apply a case-definition for being stunted: 
 
 svy$stunted <- ifelse(svy$haz < -2, 1, 2) 
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We can examine the distribution of stunted cases across the primary sampling units in this survey: 
 
 table(svy$psu, svy$stunted) 

 
We only need the counts of cases in each primary sampling unit: 
 
 table(svy$psu, svy$stunted)[,1] 
  

 barplot(table(svy$psu, svy$stunted)[,1], xlab = "PSU", ylab = "Cases", 
  cex.names = 0.5) 

 
It will be useful to save this: 
 
 casesPerPSU <- table(svy$psu, svy$stunted)[,1] 

 
And now we apply the definition of the variance to mean ration index: 
 
 varianceCasesPerPSU <- var(casesPerPSU) 
  

 meanCasesPerPSU <- sum(casesPerPSU) / length(casesPerPSU) 
  

 V2M <- varianceCasesPerPSU / meanCasesPerPSU 
 

  

A formal (Chi-squared) test can also be performed. The Chi-squared test statistic can be calculated 
using: 
 
 sum((casesPerPSU - meanCasesPerPSU)^2) / meanCasesPerPSU 
 
There are problems with the variance to mean ratio. Some clearly non-random patterns can produce 
variance to mean ratios of one. The variance to mean ratio is also strongly influenced by the total 
number of cases present in the data when clumping is present. 
 
A better measure is Green's Index of Dispersion: 
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Green’s Index corrects the variance to mean ratio for the total number of cases present in the data. The 
value of Green's Index can range between ρ ὲ ρϳ  for maximum uniformity (specific to the dataset) 
and one for maximum clumping. The interpretation of Green’s Index is straightforward: 
 
 Green’s Index ≈ 0 Random 
 
 Green’s Index > 0 Clumped (i.e. more clumped than random) 
 
 Green’s Index < 0 Uniform (i.e. more uniform than random) 
 
However this Index is much less used 
 
The idea behind using a measure of dispersion to judge data quality is a belief that the distribution of 
cases of malnutrition across primary sampling units should always be random. If this is not the case 
then the data are considered to be suspect. The problem with this approach is that deviations from 
random can reflect the true distribution of cases in the survey area. This may occur when the survey 
area comprises, for example, more than one livelihood zone. It is also less likely to be the case for 
conditions, such as wasting and oedema, which are associated with infectious disease and so may be 
more clumped than randomly distributed across primary sampling units. This may become a particular 
problem when proximity sampling is used to collect the within-cluster samples. 
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Measures of dispersion are problematic when used as measures of data quality and should be 
interpreted with caution. The exception to this rule is finding maximum, or almost maximum, uniformity 
or maximum, or almost maximum, clumping. A finding of maximum uniformity is likely only when data 
have been fabricated. A finding of maximum clumping may indicate poor data collection and / or poor 
data management. 
 
 
 

Figure 9.6 : Distribution of cases of stunting across primary sampling units in a SMART survey 
in Sudan. The dashed line on the plot marks the mean number of cases found in each primary 
sampling unit. A uniform distribution would show all bars ending close to this line. 

 
 

 
In this example the observed variance to mean ratio was 0.639 suggesting that the distribution of 
cases across primary sampling units is not completely uniform, but neither is it random. 


